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1 Introduction

The SAT college entrance exam has been widely criticized: as an impediment to minority

students’ college admission, as too expensive, and as the cause of distortions to high school curricula

(Lemann, 1999; Nairn & Associates, 1980; Leonard & Jiang, 1999; Slack & Porter, 1980; Jencks &

Crouse, 1982). In recent years, several prominent colleges have de-emphasized the SAT score in

admissions. The University of California, for example, recently enacted an admissions rule whereby

students ranked near the top of their high school class are admitted without regard to their SAT

scores; a proposal to abandon the SAT entirely—replacing it with subject exams tied to California’s

official high school curriculum—is under consideration (Atkinson, 2001). 1

The defense of the SAT has been simple: The SAT helps predict academic performance (Ca-

mara & Echternacht, 2000; Stricker, 1991; Willingham et al., 1990; Camara, 2001; Izumi, 2001). In

this view, the acknowledged correlation between SAT scores and student socioeconomic status is an

unfortunate side effect of educational inequality in the United States: Students from disadvantaged

backgrounds are simply not as well prepared to succeed in college, and the SAT should be credited,

not blamed, for measuring this shortfall (Caperton, 2001). The College Board, publisher of the

SAT, has the following description on its web site:

The SAT I measures developed verbal and math reasoning abilities related to successful
performance in college. It provides a standard by which the skills of students applying
to colleges and universities can be compared. Studies show that using both SAT I
scores together with high school records provides a more accurate prediction of future
academic success than using either alone.
(http://www.collegeboard.org/sat/html/admissions/about001.html)

This defense relies heavily on the demonstration that the SAT contributes to predictions.

A typical study uses freshman grade point averages of students at a single college as a metric of

academic success, demonstrating first that the correlation between SAT scores and freshman grades

is large and positive and second that the correlation of both with high school grades does not fully
1Throughout, I use “SAT” to denote the widely-known test that was once officially the “Scholastic Aptitude Test”

and is, since 1994, the “SAT I.” The College Board’s SAT testing program also encompasses the lesser-known SAT
II subject exams, formerly “Achievement” tests. The UC proposal would in the short term replace the SAT I with
the SAT II exams.
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account for the bivariate relationship (Breland, 1979; Bridgeman et al., 2000; Ford & Campos,

1977; Willingham et al., 1990).

I argue here that the econometric models in the SAT validity literature are misspecified and

misestimated. I focus on two important omissions. Each has the effect of biasing upward the SAT’s

measured predictive contribution.

First, few analyses control for student characteristics beyond high school grades and racial

indicator variables in estimating the SAT’s contribution (partial exceptions include Bowen & Bok,

1998; Bridgeman, 1991; Bridgeman et al., 1992; Crouse & Trusheim, 1988; Hunter & Hunter,

1984). College admissions offices have much more information than this about applicants. They

observe several nonquantitative indicators of student quality—essays, recommendations, etc.—and,

especially at public universities that primarily attract students from a single state, they can easily

gather information about students’ high schools. If the question of interest concerns the SAT’s

contribution to colleges’ ability to predict academic success, as the above College Board quotation

suggests, studies that omit available predictors are likely to overestimate the SAT’s importance. I

present evidence that the SAT’s correlation with future performance arises primarily from its across-

high-school variation, and I include school-level predictor variables in the baseline specification to

which SAT-based predictions are compared.

A second omission in the SAT validity literature concerns the highly selected samples on

which performance prediction models are estimated. Because grading standards are thought to

differ across colleges, studies typically use samples drawn from a single college (Breland, 1979).

The estimator used in the literature is consistent for population parameters only under unrealistic

assumptions about the process by which students are selected into these samples. I propose an

alternative estimator that is consistent under more reasonable—although still quite restrictive—

assumptions, and I apply this estimator to data in which the required assumptions are plausibly

satisfied.
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My preferred estimate of the SAT’s contribution to prediction is about 75% smaller than

is indicated by the models and methods used in the literature, a result approximately equally

attributable to my two innovations. I find that the correlation between SAT scores and student

demographic variables is far from spurious, but is rather a primary source of the predictive power

usually attributed to the SAT.

The relatively saturated prediction models estimated here are not intended to translate directly

into admissions policies. Unsurprisingly, students from socioeconomically advantaged high schools

are found to outperform students from disadvantaged schools, even controlling for individual high

school grades and SAT scores. If estimated academic ability is the sole admissions variable, then,

these models would suggest giving explicit advantages in admissions to students from schools with

“good” demographics. Typically, of course, admissions offices have other objectives that militate

against what might be called “affirmative action for high-SES children.”

Nevertheless, even if philosophical or legal constraints rule out admissions based on demo-

graphic variables, it is worth examining the SAT’s predictive validity in light of the full set of

available predictors. The discussion in the literature fails to make clear just how much of the

estimated SAT contribution derives from the exclusion of school-level demographic variables. My

results suggest a substantially different interpretation of the SAT’s role in admissions than is implied

in the literature and by the College Board.

The paper proceeds as follows: Section 2 sets out the econometric model underlying grade

predictions, introduces my “omitted variables” estimator, and demonstrates its superiority to the

usual estimator in selected samples. Section 3 introduces the University of California (UC) data

used in my empirical work and describes the construction of a sample in which my estimator is

plausibly consistent but the usual estimator is not. Section 4 presents models estimated on this

sample, treating the eight UC campuses as a single college. Models in Section 5 disaggregate

the data into individual campuses, using Heckman’s (1979) two-step estimator with geographic
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instruments to correct for endogenous campus assignment. Results indicate that parameters vary

substantially across campuses. However, the pooled-sample estimates are near the center of the

range spanned by the individual campus estimates, justifying my interpretive focus on the former

results.

Section 6 discusses, paying special attention to the interpretation of models that include demo-

graphic predictor variables considered inappropriate for use in admissions decisions. An Appendix

applies the richer prediction models from Sections 4 and 5 to a real-world problem, that of fore-

casting the academic performance of students admitted under the University of California’s new

class-rank-based “Four Percent Plan.” This plan seems unambiguously to improve the quality of

admitted students, but the models estimated here suggest that the effect is smaller than would be

implied by the models in the literature.

2 Econometric Model

Assume that college j has access to applicant i’s SAT score and to a vector Xi of other

characteristics; the college hopes to use this information to predict yij, a measure of the student’s

future academic achievement.2 Let the relationship between predictor variables and latent outcomes

satisfy

yij = αj + SATiβj +Xiγj + εij. (1)

This is best understood as a linear projection rather than a causal model: The SAT is more

reasonably a proxy for otherwise unobserved ability than a direct cause of yij.3 However, I follow

the literature and assume that the population relationship is linear, additive and homoskedastic:
2I assume throughout that the college attempts to minimize mean squared prediction errors, but this is a drastic

simplification. The college probably cares only about Type I and Type II errors in the admissions decision, implying
a highly nonlinear objective function: prediction errors that do not cross the admissions threshold are irrelevant to
the University’s objectives. Semiparametric models and simulations of the admissions decision, not reported here,
offer little evidence that the SAT’s contribution at the admissions margin differs from its average contribution.

3A reasonable justification for the importance of yij is that the college uses it as a realization of the ability, y∗i ,
that is of direct concern. This implies certain restrictions on the parameters of (1)—namely, that βj/γj should not
depend on j—and is taken up briefly in Section 5.
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E [εij | SATi, Xi] = 0 and E
[
ε2ij | SATi, Xi

]
= σ2

ε .

We are interested in how much predictive accuracy would be lost if observations on SATi were

not available. A reasonable measure of this is the difference between the fit of model (1) and that

of a restricted projection that excludes the SAT:

yij = δj +Xiθj + νij . (2)

For this projection to be meaningful, it must be that E [νij ] = 0 and E [X ′
iνij ] = 0. These imply

a relationship between the parameters of (2) and those of (1). Let Σ be the variance-covariance

matrix of (SATi, Xi), partitioned so that Σ22 ≡ V [Xi] and Σ21 ≡ cov (X ′
i, SATi). Then

δj = αj +
(
E [SATi]− E [Xi] Σ−1

22 Σ21

)
βj,

θj = γj + Σ−1
22 Σ21βj, and (3)

νij = εij + ωiβj,

where

ωi ≡ (SATi − E [SATi])− (Xi − E [Xi]) Σ−1
22 Σ21 (4)

is the residual from a projection of SAT onto a constant and X .

The fit statistic used in the psychometrics literature is R, the square root of the economist’s

usual R2. The SAT’s contribution to prediction, then, is alternately ∆R ≡ R1 − R2 or ∆R2 ≡

R2
1 − R2

2, where subscripts indicate the model described. My discussion focuses on ∆R2, but

empirical results also report ∆R to enable comparison with the literature.

The ∆R/∆R2 summary statistics are preferable to the alternatives, the t-statistic on the

SAT variable, which increases with the sample size, and the SAT coefficient βj, which is of little

substantive significance without knowledge of Σ−1
22 Σ21. However, ∆R and ∆R2, like the alternatives,

measure the SAT’s contribution in light of the otherX variables in the model; ifXi does not include

all the information available for prediction of yij, (1) may be misspecified and the incremental

improvement to goodness-of-fit conferred by the SAT score may not be an interesting parameter.
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2.1 Sample Selection

Unfortunately for the researcher, yij is only observed for students who enroll at college j,

likely not a representative group. The interest in fit statistics rather than regression coefficients

complicates inference from a selected sample. Even when coefficients can be estimated without bias,

within-sample fit statistics may be biased for the population goodness-of-fit. Moreover, estimates

of both R2
1 and R2

2 are required; estimators that are consistent for the former may not be for the

latter.

The problem to be solved can be broken into two distinct steps.4 I omit j subscripts hereafter

where there is no ambiguity:

• The coefficients from (1) and (2), and the residual variance σ2
ε , must be estimated.

• These estimates must be used to construct an estimate of the population ∆R2.

The second of these steps is the easiest solved. Note that

∆R2
p = R2

1,p − R2
2,p =

Vp (SATiβ +Xiγ)− Vp (Xiθ)
Vp (yi)

(5)

where the p subscript indicates population statistics, which will in general differ from their within-

sample analogues. Assume consistent estimates β̂, γ̂, θ̂ and σ̂2
ε . Then, using the population variance

matrix Σ, which may be presumed known,

∆̂R2
p ≡

(
β̂ γ̂

)
Σ

(
β̂ γ̂

)′ − (
0 θ̂

)
Σ

(
0 θ̂

)′
(
β̂ γ̂

)
Σ

(
β̂ γ̂

)′
+ σ̂2

ε

p−→ ∆R2
p. (6)

The within-sample ∆R2
s can be written similarly, with the sample variance Vs (SATi, Xi) replacing

Σ everywhere that it appears. The calculation (6) is thus known in the SAT validity literature

as a “correction for restriction of range” (Camara & Echternacht, 2000; Bridgeman et al., 1992;

Willingham et al., 1990; Hezlett et al., 2001).
4The first step may not strictly be required; ∆R2

p can be derived strictly as an expression of the population
moments of y, X , and SAT . However, any algorithm to compute it directly will likely imply coefficient estimates;
for ease of exposition, I treat these as a distinct first step.
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2.2 Alternative estimators for θ

The range correction (6) is consistent for the population statistic ∆R2
p only when γ̂, β̂, θ̂ and

σ̂2
ε are all consistent, a requirement that has been largely ignored in the literature. α and δ are

nuisance parameters, as they do not appear in (6).

For the moment, I assume that β and γ are estimated by within-sample OLS, and denote the

estimates β̂OLS and γ̂OLS. The estimation of θ is where my approach differs from that used by

previous authors.

The estimator universally used in the literature is the OLS coefficient θ̂OLS . The omitted

variables formula (3) gives:

θ̂OLS = γ̂OLS + V−1
s (Xi) covs

(
X ′

i, SATi
)
β̂OLS. (7)

My proposed estimator replaces the within-sample V−1
s (Xi) covs (X ′

i, SATi) in (7) with its

population analogue. Thus,

θ̂O.V. ≡ γ̂OLS + Σ−1
22 Σ21β̂OLS. (8)

I refer to this, and to the resulting ∆̂R2
p, as “omitted variables” estimators.

2.3 Selection bias results

My basic results are simple: β̂OLS and γ̂OLS—and therefore θ̂O.V.—are unbiased whenever

selection is purely on observables; θ̂OLS is unbiased only under the stronger condition that selection

is on X alone. However, a good deal of notation is required to establish these facts.

Unbiasedness of within-sample OLS coefficients in (1) and (2) requires, respectively, that

E [εi | SATi, Xi; yi is observed] = 0 and E [νi |Xi; yi is observed] = 0. Formalize the selection pro-

cess as follows: Let yi be observed iff Z∗
i ≥ 0, where Z∗

i is a latent variable satisfying

Z∗
i = ψ0 + SATiψ1 +Xiψ2 + µi. (9)
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µi is assumed independent of SATi and Xi but may carry information about εi. Let f(c) ≡

E [εi | µi ≥ c]; independence of ε and µ would thus imply f(c) ≡ 0.5

When selection is of this form,

E [εi | SATi, Xi; Z∗
i ≥ 0] = f (−ψ0 − SATiψ1 −Xiψ2) . (10)

The conditional expectation of νi is not as simple. Recall that νi = ωiβ + εi and note that Z∗
i can

be expressed as

Z∗
i =

(
ψ0 +

(
E [SATi]− E [Xi] Σ−1

22 Σ21

)
ψ1

)
+Xi

(
ψ2 + Σ−1

22 Σ21ψ1

)
+ ωiψ1 + µi

≡ ψ̃0 +Xiψ̃2 + ωiψ1 + µi. (11)

Thus,

E [νi |Xi; Z∗
i ≥ 0] = Eω

[
f

(
−ψ̃0 −Xiψ̃2 − ωiψ1

)]

+ Eµ

[
ωi |ωiψ1 ≥ −ψ̃0 −Xiψ̃2 − µi

]
β, (12)

where subscripts indicate the distribution over which expectations are to be taken. The first term

arises from non-independence of εi and µi, and is therefore analogous to (10). The second term

captures differences between the sample and population conditional SAT distribution. It is nonzero

whenever ψ1 6= 0; that is, whenever the selection variable Z∗
i covaries with SATi conditional on Xi.

Equations (10) and (12) establish sufficient conditions for unbiasedness of the various estima-

tors.6 From (10), β̂OLS and γ̂OLS are unbiased when the f (·) function is identically zero (or in

the less interesting case that ψ1 = ψ2 = 0). Because θ̂O.V. relies on the sample only for these

parameters, in which it is linear, it is unbiased under the same conditions. However, θ̂OLS may

be biased, as the second term of (12) may be nonzero. An additional assumption, that ψ1 = 0, is

needed.
5I impose linearity and additivity in (9) for ease of exposition. The basic results would hold in a more general

case, for an arbitrary function h (SATi, Xi) ≡ E [Z∗
i |SATi, Xi] and µi ≡ Z∗

i − h (SATi, Xi).
6These conditions are very nearly necessary; only pathological distributions for εi, µi, and ωi could make the

estimators consistent when the conditions are violated.
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It is helpful to consider how these conditions translate into assumptions about the admissions

process. I consider three situations, beginning with the most restrictive:

I. Selection on Xi: f (·) ≡ 0 & ψ1 = 0.

Here, the college considers only the X variables in admissions, and individual application

and enrollment decisions are uninformative about ability or the SAT score conditional on X .

Neither θOLS nor θO.V. is biased.

This form of selection is immediately suspect, however, in the context of SAT validity studies:

Any college that collects SAT scores from its applicants likely does so in order to consider

them in admissions decisions. Moreover, even if college j does not admit on the SAT score,

intercollegiate competition for students would likely mean that the students attending j are

those whose SAT scores are not good enough to gain admission at a more selective college.

II. Selection on observables: f (·) ≡ 0 but ψ1 6= 0.

This situation might arise at a college where admissions decisions are a function solely of the

X variables and SAT . It requires still, however, that enrollment decisions are independent

of εi. θO.V. remains unbiased, but θOLS does not. In the most plausible situation (ψ1 and

β positive, and the elements of ψ2 and Σ21 having the same sign as the elements of θ),

E
[
θ̂OLS

]
< θ, so plim∆R2

p,OLS > ∆R2
p.

The selection-on-observables assumption is somewhat more realistic than selection-on-X , but

it still requires a somewhat peculiar college that does not consider non-X variables—X will

typically not include information gleaned from essays, recommendation letters, and extracur-

ricular activities—in admissions. I argue below that the UC system has just this sort of

admissions rule.

III. Selection on unobservables: No restrictions on (9).
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Most colleges admit on the basis of variables that are not realistically included in the X

vector. At these colleges, f (·) 6= 0, and both θ estimators are biased. However, even in this

situation there is reason to prefer θ̂O.V. to θ̂OLS: If a selection correction enables consistent

estimation of β and γ, the former will be unbiased but the latter may not. In Section 5, I use

Heckman’s (1979) algorithm to estimate β and γ under unrestricted campus selection; θ̂O.V.

differs substantially from the Heckman model’s direct estimate.

Consideration of these cases highlights the unrealistic assumptions implicit in the usual method-

ology: College j must collect the SAT score from applicants, else the data would not be available,

but must not consider it in admissions, else θ̂OLS would be inconsistent. Moreover, when these

assumptions are violated, the usual estimator for θ is likely to be biased downward, reducing the

estimated R2
2 and producing an upward-biased estimated SAT contribution.

In the next section I discuss the construction of a University of California sample in which the

restrictive assumptions needed for consistency of θ̂O.V. are plausibly satisfied. Results presented in

Section 4 indicate that the bias introduced by the usual methodology is quite large in this sample.

3 Data

The current analysis is made possible by access to an unusually large and rich data set extracted

from University of California administrative records.7 It contains longitudinal academic information

on all 22,526 California residents from the 1993 high school class who applied to, were admitted

by, and enrolled as freshmen at any of the UC campuses.

I construct three outcome measures to summarize students’ academic progress at the UC. The

first is the freshman grade point average, FGPA: the average grade achieved in all courses attempted

during the student’s first year at the UC. The second, 5YRGPA, is the overall grade average in

all courses attempted during the five years covered by the data, without adjustment for dropouts
7I thank Saul Geiser and Roger Studley of the UC Office of the President for providing me these data, which are

not publicly available and to which I have access under a restricted use agreement.
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or periods of nonenrollment.8 Finally, a dichotomous variable GRADIN5 indicates whether the

student is observed to graduate within five years.9 The three outcomes are taken as alternative

realizations of the academic capacity that the SAT is meant to predict. For comparability with

the literature, FGPA is the primary focus here although the other outcomes are arguably more

important to the university’s objectives.

My empirical models use several other variables from the UC database: students’ self-reported

high school GPAs (HSGPA); their SAT scores (though not sub-scores from the math and verbal

sections nor SAT II scores, neither of which are available in the data); and their official majors

at the end of each academic year. The UC data are also supplemented in several ways: with

demographic characteristics of students’ high schools, with geographic information, and with an

auxiliary data set representing the California SAT-taker population.

761 public high schools in California are represented in the UC data, along with 275 Califor-

nia private schools, 886 out-of-state high schools, and 157 foreign schools. Information about the

California public high schools is taken from the California Department of Education’s 1999 Aca-

demic Performance Index (API) database. I extract from these data five school-level demographic

variables (the fraction of students in each of three racial groups, the average education of students’

parents, and the fraction of students receiving subsidized meals) and one outcome variable (the

mean score on the API test battery).10 I construct a crosswalk between the API data and the UC

database using the school identifiers in the National Center for Education Statistics’ Common Core

of Data and a link file from the College Board. Students are assigned to the high school that they
8Course grades are optional and infrequently assigned at the Santa Cruz campus. Models for FGPA and 5YRGPA

therefore exclude Santa Cruz observations.
9This five year window, dictated by data availability, is somewhat shorter than that usually used (the U.S. News

and World Report college rankings use the six year graduation rate). Historically, about 90% of students who graduate
from the UC within six years have done so by the end of the fifth year.

10There are two potentially serious sources of measurement error in the API data. First, I use the API database
from 1999, the first year in which it was compiled; this may not perfectly measure 1993 high school characteristics.
Second, the parental education variable comes from a survey with very low response rates. However, the correlation
between school mean parental education and the school API score is 0.92, suggesting that concerns about within-year
data unreliability are probably unwarranted (Technical Design Group, 2000).
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report having attended most; when the API database does not have complete information about

this school, I assign students instead to the school from which they report having graduated. 83%

of the California public high schools successfully match to complete API information, providing

school-level information for 88% of the in-state public high school graduates and 72% of all students

in the UC data.

I approximate each high school’s location by the centroid of the county in which the school is

located. Latitude and longitude information from the US Geological Survey’s Geographic Names

Information System (http://geonames.usgs.gov/gnishome.html) is used to calculate the dis-

tance between this point and each of the eight UC campuses; these distance variables are used in

Section 5 as instruments for students’ choice of campuses.

Finally, both range corrections and my omitted variables estimator require an estimate of Σ,

the population variance matrix of SAT scores and other predictor variables. The population of

interest is the set of potential applicants to the University of California, as these are the students

for whom performance might need to be predicted. This population is difficult to identify, and

SAT validity studies typically approximate it by the universe of SAT takers. SAT-takers are not

representative of all high school graduates, but it seems reasonable that all California students who

contemplate attending a four-year college will have taken the SAT. I use a College Board data set

consisting of observations on all California students from the 1994-1998 high school classes who

took the SAT exam.11 A crosswalk table is used to transform the College Board database’s post-

1994 “recentered” SAT scores to the pre-1994 scale used in the UC data. Students in the College

Board database are matched to API data, using a procedure similar to that described above, and

the observations with non-missing data are taken to be the population of interest.
11I thank David Card and Alan Krueger, the Mellon Foundation, and the College Board for permitting me access

to these data.
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3.1 Sample Construction

In Section 2, I discussed the nonrandom sample selection that can be introduced by the admis-

sions process and by students’ application and enrollment decisions. I exploit an institutional fea-

ture of the University of California admissions process to construct an analysis sample in which the

ordinarily intractable selection-on-unobservables is arguably reduced to selection-on-observables:

Students may apply to as many of the eight UC campuses as they like, but a systemwide eligibility

determination is the first step in each campus’ admissions process. The minimum eligibility criteria

are public information and, in 1993, were primarily a function of the SAT score and high school

GPA. Eligible students denied admission by all of the campuses to which they applied were per-

mitted to enroll at one of the less selective campuses, while students who did not meet the criteria

were not ordinarily eligible for admission at any campus.12

My pooled analysis sample consists of the 13,363 students from the eight UC campuses who

have non-missing individual and school data and who appear to have met the 1994 eligibility

criteria. For students in this sample, admission was guaranteed; selection came only from their

decisions to apply and to accept an admission offer that may not have been at the student’s

preferred campus. It seems plausible that these decisions are uninformative about unobserved

ability. I impose this assumption throughout my empirical analysis: When (SATi, HSGPAi) meet

the eligibility requirements, εij is assumed to satisfy

E [εij | SATi, Xi; i attends a UC campus] = E [εij | SATi, Xi] = 0. (13)

Table 1 presents summary statistics for the resulting UC sample and for the population of

SAT-takers. Mean SAT scores in the UC sample are more than 200 points higher than among

California SAT-takers, and mean HSGPAs are more than half a point higher. UC students’ high

schools, however, are only slightly demographically advantaged relative to those of typical SAT
12Leonard & Jiang (1999) note the utility of the same institutional feature for validity studies.
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takers. It is clear that the sample of UC students is a considerably selected subset of all SAT-

takers, but it seems plausible that this selection is primarily driven by the SAT score and HSGPA.

Additional columns in Table 1 present Σ21, the population correlation between the SAT score and

X , and its within-sample counterpart. These two measures differ substantially, indicating that the

within-sample θ̂OLS is likely biased for the population θ.

Figure 1 presents another view of the selection process. It displays kernel estimates of the

empirical SAT distribution: A solid line describes the constructed analysis sample and a dashed

line the population of SAT-takers.13 A third line describes the subset of SAT-takers who had

their scores sent to one of the UC campuses, a required part of the UC application. The UC

applicant distribution again suggests that assumption (13) may not be far off, at least as regards

the application decision: Applicants are only slightly positively selected (with respect to the SAT

score; Figure 1 does not speak directly to selection on unobservables) from among SAT takers.

4 Estimation and Results: Pooled Model

The UC eligibility rules mean that selection into my analysis sample is arguably a function

of observable variables. However, the sample includes students at eight UC campuses, while the

presentation in Section 2 treats each campus separately. I deal with this discrepancy in two ways:

In this section, I impose assumptions that permit a single specification for the pooled UC sample.

To test the robustness of the findings, in Section 5 I abandon these assumptions and estimate

individual campus parameters with corrections for endogenous sorting.

Thus far, my notation has allowed grading standards (described by αj , βj, γj, δj , and θj)

to vary freely across colleges. The potential for such variation has led many authors (see, e.g.,

Breland, 1979, p. 4) to recommend against pooling data from colleges with potentially divergent
13The density estimates use an Epanechnikov kernel with a bandwidth of 40 SAT points. This oversmooths the

SAT-taker data, but is chosen to eliminate much of the artificial clumpiness introduced by the inexact, many-to-one
conversion used to transform post-1994 SAT scores to the pre-recentering scale.
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grading standards. The UC campuses, being part of the same system, might plausibly have similar

grading standards. In this section, I impose the restriction that

(βj, γj, θj) = (βk, γk, θk) ≡ (β, γ, θ) (14)

for j, k campuses of the UC system. This permits grading standards to differ only by a constant

location parameter across campuses, with the parameter perhaps chosen to allow each campus to

use the usual 4-point scale.14 Models (1) and (2) become

yij = αj + SATiβ +Xiγ + εij and (1’)

yij = δj +Xiθ + νij . (2’)

With the additional imposed assumption that the distribution of students across campuses is

uninformative about εij, OLS with campus fixed effects consistently estimates (1’). I require only

estimates of β and γ—αj is a nuisance parameter that is interpreted as a characteristic of the

college, rather than of the individual.

Columns A, D, and F of Table 2 report estimates of these parameters from the pooled analysis

sample, using each of the three outcome measures as the dependent variable and the high school

GPA as the only X variable. Columns A and D include fixed effects for end-of-year major, in

addition to the previously discussed campus fixed effects, to control for differences in grading

standards across departments. Column F excludes both sets of fixed effects, under the assumption

that differential grading standards should not affect graduation rates, and uses a linear probability

model to facilitate computation of goodness-of-fit statistics.

The lower portion of Table 2 reports the sample and population goodness-of-fit measures R2
s

and R2
p. These are calculated as described in equation (5), with estimated campus/major fixed

14When modeling the GRADIN5 outcome variable, for which grading standards are plausibly irrelevant, I impose
the additional assumption that α and δ are constant across campuses. My discussion here focuses on the less restrictive
case.
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effects excluded both from coefficient vectors and from V (yi); calculations of R2
s replace population

variances with their sample analogues.

Column B presents estimates of the restricted model and SAT contribution using the usual

methodology (OLS for equation (2’) and corrections for restriction of range). The results are in line

with those found in the literature: Incremental R is 0.082 in the sample and 0.073 in the population.

Looking at the ∆R2 statistics, the SAT incrementally explains about 7.5% of the within-sample

FGPA variance, and the range correction suggests that it explains 9.4% of the population variance.

However, because SAT scores enter the sample selection rule for my pooled sample but do not enter

equation (2’), θ̂OLS is not consistent for θ and these estimates of the SAT’s contribution are biased.

Columns C, E, and G use estimates of Σ from the College Board database (Σ−1
22 Σ21 = 0.187,

with a standard error of 0.0005, when X is just HSGPA) to consistently estimate θ for each of

the three outcome variables. The fixed effect parameters in my pooled model present a problem

for the omitted variables correction, as students who never enrolled in the UC are not assigned

to a campus or major. However, because the fixed effects are interpreted as differences in grading

standards rather than as realizations of individual ability, variation in αj and δj should not be

counted as explained variance and the population projection of SAT onto X is performed without

fixed effects.15 When θ is estimated using the omitted variables correction, residuals need not be

orthogonal ot X in the sample. R2
s is therefore not analogous to the usual R2 in columns C, E, and

G; it is presented nevertheless for completeness.

Comparison of the OLS model in column B with the consistent estimates in column C is

instructive. As expected, θ̂OLS is lower than θ̂O.V., by about 10%. This produces population

goodness-of-fit statistics that are lower than the consistent statistics, inflating estimates of the

SAT’s contribution. The biased ∆Rp and ∆R2
p reported in column B are roughly in line with those

15This might not strictly identify θ if campus and/or major choice varies with ωi. However, it provides a reasonable
estimate of the SAT’s contribution to within-campus/major grade prediction, abstracting out the SAT’s contribution
to predictions of campus and major. Range corrections require a similar approach (e.g. Young, 1990), regardless of
the θ estimator used.
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found in the literature; the consistent estimates of the same statistics in column C are over 40%

lower. Similar patterns hold for the 5YRGPA and GRADIN5 outcome variables, although Table 2

does not report the OLS estimates of the restricted model for these outcomes.16

However, the models in Table 2 answer a question of limited substantive interest: What would

be the SAT’s contribution to prediction if HSGPA were the only other available predictor variable?

They do not answer the more interesting question: What is the SAT’s contribution to predictions

based on the full set of other variables available to admissions offices?

Before turning to this question, I present in Table 3 an instructive variant of the models in

Table 2. Here, HSGPA and the SAT score are broken into two parts each: The within-sample high

school mean, and the deviation from that mean. Restricted models exclude both the mean SAT

score and the deviation from mean, and are estimated with the omitted variables correction. The

estimated coefficients indicate that the SAT’s predictive power comes primarily from its variation

across schools; within-school variation in scores is much less indicative of future performance.17

The HSGPA variable is the opposite: the coefficient on the mean HSGPA at the high school is

small and, in models including SAT, insignificantly different from zero; the deviation from school

mean has a large coefficient. These results are consistent with the SAT’s claimed role as a corrective

for differences in grading standards across high schools. They suggest, however, that the inclusion

of variables characterizing students’ high schools in X might have a substantial effect on SAT ’s

estimated coefficient and predictive contribution. Admissions offices typically have access to such

information; at private colleges school-level measures are often explicit admissions variables. A fair

assessment of the SAT’s contribution to pure prediction should not permit the SAT score to stand

in for these measures.
16Some authors (discussed, e.g., in Breland, 1979; Camara & Echternacht, 2000) have found that predictions are

different for long-term grade averages like 5YRGPA than for FGPA. Table 2 offers some support for this conclusion,
but indicates that the consistently-estimated SAT contribution is the about same for the two measures.

17One explanation for this result might be that any measurement error in SAT scores is concentrated into the
deviation from school mean SAT score. However, simple simulations suggest that the measurement error would have
to be substantial—corresponding to a SAT reliability of about 0.5, well below the College Board’s claim of 0.9—to
account for the sizeable difference in coefficients seen here.
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4.1 The Effect of School-Level Demographic Variables

Table 4 adds several school-level demographic measures to the X vector. Consistent with

Table 3, the school-level variables have a relatively small effect on the HSGPA coefficients but cause

the SAT coefficient to fall substantially from Table 2. The change reduces the SAT’s measured

contribution to grade prediction to about half of that seen in Table 2: Consistently estimated ∆R2
p

was 0.055 for FGPA and 0.053 for 5YRGPA in Table 2; it falls to 0.026 and 0.021, respectively,

when the school demographic variables are included in X . The SAT’s contribution to prediction of

GRADIN5 falls by a factor of eight from Table 2, to near zero.

To test whether the school-level variables are merely standing in for individual versions of the

same variables, additional unreported regressions included individual race indicators along with the

school averages. In these models, the school averages retain substantial predictive power and the

SAT’s contribution is, if anything, slightly higher than in Table 4.

However, demographic measures are only a subset of the school-level variables that might

predict performance. Demographics might be considered inputs to the high school’s production

function; to the extent that high schools differ in quality, understood as the efficiency with which

inputs are turned into outputs, measures of educational output should also be predictive of col-

lege performance. Table 5 restricts the focus to the FGPA dependent variable and considers three

exam-based measures of high school output: The mean score among all students at the high school

on the API exam battery, the mean SAT score among all SAT-takers at the high school, and the

mean SAT score among UC matriculants in my sample at the high school. These measures are

progressively more precisely targeted at the subpopulation within the school for whom outcomes

are to be predicted. Each is significantly predictive of FGPA, and each adds somewhat to predictive

accuracy. The mean SAT variables, in particular, reduce the predictive contribution of the individ-

ual SAT score. These specifications may understate the SAT’s contribution to prediction—under

what circumstances can we imagine colleges having access to the high school’s mean SAT score if
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individual SAT scores aren’t required for admission?—but are suggestive of what might be seen

if scores on other standardized tests were averaged over the appropriate subpopulation within the

school.18

Taken together, Tables 4 and 5 indicate that Table 2 overstates the SAT’s role in prediction:

Somewhere around half of the consistently-estimated SAT contribution to grade prediction—and

a much larger share of its contribution to graduation prediction—is more reasonably attributed

instead to the school-level variables considered here. College admissions offices have access to

measures of school demographics and quality, and many colleges even consider them in admissions

decisions (though not typically for the purpose of improving predictions). If the SAT score were

not available, colleges could use school demographic and quality measures to achieve about the

same predictive accuracy as is provided by the SAT .

5 Campus-by-Campus Modeling

The above results rely on the assumptions that the distribution of students across the UC

campuses is ignorable and that coefficients are constant across campuses. The former assumption,

in particular, seems implausible: One would have to believe that the campus admissions commit-

tees fail to uncover any information about future performance in students’ essays, extracurricular

activities, or letters of recommendation that is not already available from the high school GPA and

SAT score.

A crude attempt to test the pooling assumptions was made by estimating a version of the

model from Table 2, Column A, in which the SAT and HSGPA effects are allowed to vary by

campus. Tests for equality of either coefficient across campuses decisively reject these hypotheses

(F[6; 12,957]=10.7 and 3.8, respectively). A slightly weaker hypothesis, that the ratio of βj to

18Of course, Table 5 does not prove the importance of school quality, as the variation in mean test scores may simply
reflect differences in unobserved inputs. In particular, the sub-school-level mean SAT scores may reflect demographic
variation among different subpopulations within the school.
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γj is constant across campuses—this would arise if, for example, y∗i = SATiβ + Xiγ + εi is some

unobserved individual ability and yij = αj + y∗i κj—is also rejected, with an F statistic of 6.4.

These tests indicate either that coefficients vary across campuses, violating assumption (14), or

that students sort nonignorably into campuses.

Consistent estimation thus requires modeling prediction at the individual campus level. Be-

cause the individual campus admissions rules, unlike the systemwide eligibility determination, con-

sider variables unobserved in my data, I can no longer assume that

E [εij | SATi, Xi; student i attends campus j] = 0. OLS estimates of βj and γj are therefore po-

tentially biased. The context is of course different, but the problem here is conceptually similar to

that of estimating industry-specific wage equations with Roy-model differences in unobserved skill

across industries (Roy, 1951; Gibbons & Katz, 1992).

Unlike in the industry wage differential literature, however, I have plausible instruments for

students’ choice of campus: Students are more likely to attend campuses close to their homes.

For each student i and campus j, I construct three geographic variables: an indicator for whether

student i’s high school is in the same county as campus j, another indicator for whether the high

school is in the same county as campus k 6= j, and a continuous measure of the distance between

i’s high school and campus j.

I use Heckman’s (1979) two-step estimator to obtain estimates of campus-specific βj and γj’s

that are consistent in the presence of endogenous sorting. I retain the assumption that selection

into the sample of UC matriculants is ignorable—E [εij | SATi, Xi; i attends the UC] = 0—and

thus need only model the choice among the eight campuses. Let Wij be the 3-vector of geographic

instruments, and let

Z∗
ij ≡ π0j + SATiπ1j +Xiπ2j +Wiπ3j + ηij (15)

be a latent variable that determines selection into campus j: i attends j if f Z∗
ij ≥ 0.19 Assume that

19This Z∗
ij plays a role similar to, but distinct from, that of the similar variable used in Section 2, which can be
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within the UC sample, V [ηij] = 1, ηij and εij are independent of SATi, Xi, and Wij, and ηij and

εij are jointly normally distributed with correlation ρj.

Under these assumptions, πj ≡ (π0j, π1j, π2j, π3j)
′ can be estimated by a probit model for

the dichotomous dependent variable Zij ≡ 1 (i attends j) in the sample of UC students. Heckman

(1979) proves that (1) then implies

E
[
yij | SATi, Xi, Wij ; Z∗

ij ≥ 0
]

= αj + SATiβj +Xiγj

+ ρjσελ ((1, SATi, Xi, Wij) πj) , (16)

where λ (c) ≡ φ (c) /Φ (c). Heckman further shows that when the inverse-Mill’s-ratio term is con-

structed using estimated πj from the probit model for selection, OLS is consistent for (16). Heckman

(1979) and Greene (1981) provide asymptotically correct standard errors. σεj is always positive, so

the sign of the fourth coefficient is the same as the sign of ρj: A positive coefficient thus means that

campus j attracts students with high εij ’s; a negative coefficient that the students are negatively

selected.

Table 6 reports the results when the Heckman model is estimated for the FGPA outcome

variable at the San Diego campus (UCSD). Panel A reports OLS coefficients, Panel B1 the pro-

bit coefficients πj , and Panel B2 the selection-adjusted FGPA coefficients from equation (16).20

Columns A and D estimate equation (1); in Column A the HSGPA is the only X variable, while

in Column D the school-level variables from Table 4 are also included in all three panels. The ex-

clusion of Wij from the outcome model is especially plausible in Column D, as school demographic

variables might absorb any geographic variations in unobserved ability.

The coefficients in Panel B1 show that the geographic variables are strongly predictive of

thought to govern selection into the UC system as a whole. Equation (15) applies only to students already in the
UC system. It is admittedly somewhat misspecified: Students in the system must attend one of the eight campuses,
but (15) cannot hold for each of the eight. I ignore this complication and treat each of the eight selection decisions
as separate and independent.

20Because some majors are found at only one of the UC campuses, a full set of major dummies would perfectly
predict campus choice for some students. To avoid this, the freshman majors are collapsed into five broad groups
with fixed effects for four of these groups included in every model in Table 6.
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selection into the UCSD campus with the expected signs: Students from San Diego County are

more likely than others to attend UCSD; students from counties containing other UC campuses

are less likely; and students from far-away counties are less likely to attend than are students from

nearby. In both A and D, the Mill’s ratio coefficient in Panel B2 is significantly positive, indicating

that at this campus, the third most selective in the UC system, students with above-average residual

ability (high εij) are more likely to be admitted and enroll (high ηij).

Columns B and C present two approaches to estimation of the restricted model (2). In Column

B, θ is estimated using a restricted version of (16) in which I constrain π1j = βj = 0; this is

analogous to θ̂OLS in the pooled sample. In column C, the omitted variables approach is used, with

estimates γ̂j and β̂j taken from the Heckman-corrected model in Column A. These two approaches

are repeated for the expanded X vector in columns E and F. In both cases, the omitted variables

estimator yields a higher HSGPA coefficient and R2
2, p than the direct Heckman estimation of the

restricted model.

Selection into the UCSD subsample occurs in two stages: Students are selected into the UC

sample, then students in this sample are selected into UCSD. The Heckman estimator recovers UC-

sample projection coefficients from the subsample of students attending UCSD; the conditions in

Section 2 must still be met for these UC sample coefficients to equal their population counterparts.

As in Section 4, I assume that f (·) ≡ 0 but ψ1 6= 0 in the UC selection model (9); as a result,

Heckman-model estimates of βj and γj are consistent but the restricted Heckman model is not

consistent for θj. As before, the omitted variables estimates in columns C and F are not biased by

selection on SAT.

The Heckman model permits estimation of the implied residual variance of y in the population

from which the sample was selected. This, along with the Heckman-model estimates β̂j and γ̂j

and the omitted variables estimate θ̂j, O.V., is sufficient to calculate the ∆̂R2
p estimator from (6).

UCSD ∆̂R2
p’s are slightly lower than in the pooled sample; as in that sample, however, the omitted
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variables estimator’s consistent estimates in Columns C and F are substantially smaller than the

conventional, selection-biased estimates in B and E.

Compare the usual methodology’s estimate of the SAT’s contribution to prediction of FGPA

at UCSD—∆R2
p = 0.150 in Panel A, Column B—with the corrected estimates elsewhere in Table

6. The estimated ∆R2
p falls to 0.068 (Panel A, Column C) when the omitted variables estimator

adjusts for selection-on-SAT into the UC system; again to 0.054 (Panel B2, Column C) when the

Heckman model permits endogenous sorting into the UCSD subsample; and yet again to 0.024

(Panel B2, Column F) when school-level variables are included in the X vector. The final estimate

is roughly one-sixth as large as would be implied by the conventional methodology.

The coefficients of the selection-adjusted model are quite unstable across campuses, however.

Space constraints prevent reporting a complete analogue of Table 6 for each of the UC campuses, but

Table 7 presents selected statistics from these models. Panel A reports naive estimates—ignoring

the problem of endogenous selection into campuses—for both the sparse model (X includes just

HSGPA) and the school demographics model (X includes the variables used in Table 4). Panel B

reports Heckman-corrected estimates for the same two models. All models in both panels use the

omitted variables estimator for θ and ∆R2
p.

At most campuses, there is strong evidence for endogenous selection, but the SAT’s estimated

contribution in the Heckman model is not substantially different from that indicated by OLS. The

pattern of coefficients on the Mill’s ratio is interesting. Samples seem to be positively selected

at San Diego, Riverside, Los Angeles, and Santa Barbara, and negatively selected at Davis. This

perhaps indicates that the former campuses do a better job of admitting and recruiting students

who will outperform their numerical qualifications.

The Berkeley campus warrants a special note: There, the SAT coefficient in the outcome

equation is unusually low, and it actually increases when the school demographic variables are

added to X . Berkeley is easily the most selective campus in the UC system, a fact which suggests
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several potential explanations for its anomalous estimates.21 Two of the most plausible are that

there are declining returns to the SAT score or that competition with elite private colleges produces

negative selection among the most qualified students at Berkeley. Either of these hypotheses implies

a higher estimated SAT coefficient in subsamples that exclude students with the highest SAT scores.

The Berkeley campus models were repeated on a sample that artificially excluded students with

SAT scores above 1,400. I found no evidence for different SAT coefficients in the truncated sample.

Further study is clearly needed to understand the Berkeley result; the implied conclusion that

Berkeley grades are much noisier than at other campuses seems implausible.

6 Implications for Admissions Policy

The current analysis extends the literature on SAT validity in two important ways: By ad-

dressing sample selection issues that are commonly ignored and by including a broader set of

nonacademic predictor variables than are typically included in grade prediction models. Figure 2

displays the effect of these changes on campus-specific and pooled-sample estimates of the SAT’s

contribution (I use ∆Rp here for comparison to the statistics usually reported in the literature).

Each extension substantially reduces the indicated contribution of the SAT to predictive accuracy.

The discussion of sample selection corrects an important methodological oversight in the ex-

isting literature. The samples ordinarily used in SAT validity studies are too highly selected to

support the conclusions that have been drawn from raw within-sample correlations. Models that

allow for a more reasonable selection model than than is implicitly imposed in the literature halve

the estimated SAT contribution.

This study’s other innovation, the inclusion of school-level variables in prediction equations,

has an equally large impact on the stylized findings. The SAT is shown to retain predictive power
21Berkeley students in my analysis sample have a mean SAT score of 1,213, and 13% of them score above 1,400;

the nearest other campus on both measures is UCLA, where the mean score is 1,150 and only 3.7% have scores above
1,400.
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for college academic success when nonacademic school characteristics are included in prediction

models, but considerably less than is indicated by the sparse models used in the literature. It is

worth noting that the school-level variables used here are not difficult to obtain—the API database is

available on the California Department of Education’s web site—and are therefore readily available

to any admissions office hoping to use them. If pure prediction is the goal, my results suggest that

accuracy is maximized when nonacademic variables are used in combination with the HSGPA and

SAT score.

However, in the real world, pure prediction is not exactly the goal. Admissions offices do not

use all available variables, although they surely know that by doing so they could generate more

accurate predictions. An inquiry into the reasons for this decision is well beyond the scope of this

paper, but it is perhaps fair to say that we have made a social decision to forgo the predictive

accuracy that certain “disallowed” variables would permit. Thus, for example, public universities

may not give explicit preferences to white students over blacks, Hispanics, and Asians on the basis

of a conclusive demonstration that this would produce a higher-performing class of admittees. The

legalities of admissions rules that condition on high school characteristics are—at least to this

non-legally-trained economist—less clear, but it is difficult to imagine any university granting the

preferences implied by Table 4 without great public criticism.

What do these restrictions imply about the interpretation of models that contain disallowed

variables? The answer depends on the question that is being asked. For the moment, consider the

question that, in my reading, motivates the validity literature: Does the SAT provide information

about how well students will perform in college? To illustrate the relevance of the models in Table

4 to this question, I consider an admittedly contrived example.

Suppose that an educator offered colleges a new variable to use in admissions, suggesting that

a count of students’ dental cavities is a good measure of students’ “developed math and verbal

abilities related to successful performance in college.” Suppose further that in a hypothetical data
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set he demonstrated a strong positive correlation between the number of cavities and the freshman

grade average, and that the correlation remained in regressions controlling for HSGPA.

Would this be considered evidence that the number of cavities is an important predictor of

performance? Most likely not. A plausible interpretation of the result is that cavities are serving as

a proxy for omitted socioeconomic measures. One might imagine that lower-income families devote

comparatively few resources to children’s dental care, leading to an SES gradient in the number of

cavities. If SES predicts college performance, this could produce the hypothesized results.

This objection rests on a testable hypothesis: that dental health has no relationship to academic

performance once SES is controlled. A researcher might estimate a regression containing both the

number of cavities and more direct measures of socioeconomic status. If the coefficient on the

number of cavities were unchanged by the inclusion of SES variables, the hypothesis would be

rejected, and the researcher would be forced to conclude that the number of cavities is potentially

a measure of academic potential. If, on the other hand, the coefficient on the number of cavities

fell to zero when SES variables were added, the researcher would reject the claims made on behalf

of the cavity variable, concluding that it serves primarily as a proxy for SES in sparse models. One

can also imagine an intermediate case, in which the cavity coefficient falls substantially, though not

to zero, when SES is controlled directly. Interpretation is slightly trickier here, but a reasonable

conclusion would be that the cavity measure containes some independent information about student

quality, though not as much as had been indicated in the sparse model. Put slightly differently,

this result would imply that the portion of the cavities measure that can be predicted from SES is

more highly correlated with academic outcomes than is the residual portion.

Of course, the SAT score is different from the number of cavities. We have theoretical rea-

sons to think that SAT scores measure academic ability: An examination of the SAT instrument

reveals that it requires skills—literacy, logical thinking, arithmetic—that are directly related to

the skills required for college success. The cavity variable lacks what psychometricians call “face
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validity” (Anastasi, 1988). The point, however, is that an empirical evaluation of this theoretical

argument risks overestimating the information contained in SAT scores if other available variables

are artificially excluded from the models estimated.

Comparison of Tables 2 and 4 reveals that the inclusion of school-level demographic variables

reduces the SAT’s coefficient by 25 to 65 percent (for FGPA and GRADIN5 prediction, respectively)

and its contribution to predictive accuracy by 50 to 85 percent. The smaller estimated contribution

in Table 4 is the more appropriate measure of the amount of unique information contained in SAT

scores, and it is this contribution that should be counted on the benefits side of a societal cost-

benefit analysis of the SAT.

But what do these results say to a college that must decide whom to admit and is prohibited

from using demographic variables directly? After all, while much of the information contained in

the SAT score is not unique, the SAT score may be the only source that the college is permitted to

use. The import of my results thus depends on the college’s attitude about the prohibited variables.

If the college regrets the prohibition, and would be willing to use any permitted variables

that help predict performance, it will ignore Table 4. It will generate for each student a predicted

performance using weights derived from sparse models like those in the literature and in Table 2,

and admit on that basis. This will weight the SAT more heavily than in the richer models presented

in Tables 4 and 5, in effect allowing it to stand in for the school-level demographic and outcome

variables that are excluded from the admissions decision. (In my hypothetical example, such a

college might also grant preferences to students with few cavities, as a permissible route toward

a demographically desirable class of admittees.) The resulting class will be less able, on average,

than what would result from a complete information best-prediction rule, but the SAT-based rule

will discriminate less effectively against students from low SES high schools. This is analogous,

though in the reverse direction, to Chan and Eyster’s (2000) result: admissions offices that wish to

use affirmative action but are prohibited from doing so will randomize admissions to obtain more
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minority admissions at the cost of weakened ability standards.

On the other hand, a college that is committed to the spirit, and not just to the letter, of

the prohibition concerning demographic variables may take a different view. Such a college may

not be willing to exploit the predictive power of these demographic variables, either explicitly or

implicitly through the SAT. One approach for such a university might be to estimate saturated

models like those in Table 4, but then conduct admissions on the basis of a rule that “zeros out”

coefficients on disallowed variables while retaining the estimated coefficients on academic variables.

A college that pursued this policy might be willing to consider cavities as well, but only to the

extent that they retain predictive power after controlling directly for SES. Another, more radical,

approach might be to regress SAT scores and HSGPAs on the disallowed variables, then consider

only the residuals from these regressions in admissions (Studley, 2001). This, too, would weight the

academic variables as in Table 4, but would only make use of the portion of those variables that is

orthogonal to the disallowed variables. Either approach would sacrifice mean predicted performance

relative to best-predictor rules but would admit more students from schools with disadvantageous

demographics.
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A Appendix: Evaluating the “4% Plan”

The UC eligibility rules changed in two important ways in 2001. First, the eligibility thresholds

were changed to incorporate a new variable, the SAT II score.22 Second, the “Eligibility in the

Local Context” rule, known popularly as the “Four Percent Plan,” was introduced. Under this

rule, students who ranked in the top four percent of their high school classes became eligible for the

UC, even if their SAT scores fell below the usual thresholds. The evaluation of students admitted

under this rule provides an interesting application for grade prediction models.

The Four Percent Plan (hereafter, FPP) was explicitly intended to admit students from low-

performing high schools, where even the best students achieve low SAT scores. (At all but the

worst schools, well over four percent of students meet the regular UC eligibility thresholds, which

are chosen to admit 12.5% of high school graduates in California.) Grade prediction models that

do not take account of differences between schools might be expected to err in predicting these

students’ performance. The models estimated in this study take explicit account of some of the

school characteristics that correlate with both SAT scores and college performance, and are therefore

more appropriate predictors of FPP students’ performance.

The College Board database of all SAT-takers in California in the 1994 through 1998 cohorts

is used to simulate admissions under both regular and FPP rules. I use the National Center for

Education Statistics’ Common Core of Data to obtain a measure of school size, and I use that

measure to construct a class rank under the assumption that all SAT-takers at each high school

outrank all non-takers. This assumption probably leads me to overstate the number of students

made eligible by the FPP. On the other hand, any behavioral response to the change in eligibility

rules would expand the pool of FPP students beyond those I can identify.
22The UC data used here do not include SAT II scores, so do not permit an evaluation of this change. However,

although the validity of SAT II scores has not been widely studied, in the College Board database SAT II scores are
less predictable from the demographic variables considered here than are SAT I scores. This suggests at least the
possibility that the SAT II can contribute more to prediction than the SAT I.
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From the universe of SAT-takers in the 1994-1998 cohorts, 344 students are identified who

would have been eligible under the FPP, but not otherwise, had the 2001 criteria been in effect

when they applied to colleges. A natural comparison group is the 299 students who would have

been eligible under the regular rules had the thresholds been 10 SAT points lower. The students

in the FPP group have considerably higher HSGPAs and lower SAT scores than do students in the

comparison group. The FPP group also includes more blacks, Hispanics, Asians, and women, and

on average its members come from schools with larger minority populations, more students getting

free lunches, lower parental education, and lower API scores.

Table A.1 compares the predictions generated by sparse and richer models for FGPA predic-

tion. Coefficients are drawn from the pooled-sample models in Tables 2 and 4 and from models

for the San Diego and Riverside campuses summarized in Tables 6 and 7.23 Each coefficient vector

predicts that the FPP group will dramatically outperform the comparison group, a result driven by

the sizeable gap in HSGPAs. However, the models that account for school characteristics predict

a smaller performance gap than do the sparse models, which do not adequately capture the effects

of the low-SES schools from which the FPP students are drawn.

The clear gap in predicted performance between FPP and comparison groups suggests that

the FPP could be made considerably larger without diluting the quality of the admitted students.

Because students brought in by the FPP come disproportionately from schools with characteristics

that are predictive of poor performance in college, models that ignore these characteristics are likely

to suggest overexpansion of the program relative to its performance-maximizing size. The final row

of Table A.1 describes the optimal size of the percent plan implied by each prediction model, defined

as the size at which the average student brought in by a 0.5% expansion of the percent plan will

perform as well as the average student in the comparison group. The sparse models indicate that
23Riverside is the least selective UC campus and, therefore, the campus most likely to accept students at the

eligibility margin. San Diego will likely accept fewer marginally eligible students, but is chosen because its prediction
coefficients seem reasonably close to the middle of the range seen in Table 7.
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the percent plan should reach up to 1.5% deeper into the class rank distribution than is suggested

by the models incorporating school-level measures.

Equally interesting, there is considerable variance among the different prediction coefficients

used: The Riverside model suggests a percent plan reaching deeper than that implied by either the

pooled sample or the UCSD coefficients. Because Riverside is likely to enroll most of the marginally

eligible students, perhaps coefficients for that campus should be given more weight in this decision;

in any case, the divergence among different models, like the variation in coefficients in Table 7,

raises a warning flag about the generalizability of validity models.
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Table 1: Summary Statistics for the UC Analysis Sample and the California SAT-taker Population

UC Sample CA SAT-takers
Variable Mean S.D. corr (SATi, ·) Mean S.D. corr (SATi, ·)
Individual Academic Variables

HSGPA 3.82 0.39 0.38 3.25 0.63 0.52
SAT 1,100 173 1.00 898 228 1.00

High School Demographic Characteristics
Frac. Free Lunch 0.25 0.22 -0.33 0.29 0.23 -0.36
Frac. Black 0.07 0.10 -0.16 0.08 0.11 -0.18
Frac. Asian 0.21 0.18 0.12 0.17 0.17 0.10
Frac. Hispanic 0.27 0.22 -0.31 0.31 0.25 -0.34
Avg. Parental Ed. 14.4 1.3 0.37 14.1 1.3 0.41

Individual Outcome Variables
FGPA 2.89 0.62 0.33
5YRGPA 2.98 0.58 0.31
GRADIN5 0.70 0.46 0.15

N 13,363 435,890

Notes: FGPA and 5YRGPA statistics exclude 366 observations from the Santa Cruz campus. See
Section 3 for description of variables.
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Table 2: Basic Prediction Models for Pooled Sample

FGPA 5YRGPA GRADIN5
OLS OLS O.V. Est. OLS O.V. Est. OLS O.V. Est.

Variable (A) (B) (C) (D) (E) (F) (G)
HSGPA 0.58 0.68 0.75 0.49 0.64 0.20 0.24

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
SAT/1000 0.90 – – 0.79 – 0.22 –

(0.03) (0.03) (0.02)
Campus/Major FEs 6/19 6/19 6/21 –
R2

OLS 0.219 0.173 0.222 0.046

Goodness-of-fit and SAT contribution
R2

s 0.249 0.174 0.205 0.224 0.183 0.045 0.041
R2

p 0.455 0.362 0.400 0.420 0.367 0.110 0.103
∆R2

s 0.075 0.044 0.041 0.005
∆R2

p 0.094 0.055 0.053 0.008
∆Rs 0.082 0.046 0.046 0.011
∆Rp 0.073 0.042 0.043 0.012

Note: See text for descriptions of O.V. Estimator (eq. 8) and R2
p (eq. 5).
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Table 3: Within- and Between-School Variables in Prediction Models for Pooled Sample

FGPA 5YRGPA GRADIN5
(A) (B) (C) (D) (E) (F)

High School Means
HSGPA 0.03 0.20 -0.00 0.16 0.02 0.09

(0.04) (0.04) (0.03) (0.03) (0.03) (0.03)
SAT/1000 1.73 – 1.69 – 0.76 –

(0.06) (0.05) (0.04)
Deviations from High School Means
HSGPA 0.74 0.85 0.66 0.74 0.28 0.28

(0.02) (0.02) (0.01) (0.02) (0.01) (0.01)
SAT/1000 0.46 – 0.33 – -0.06 –

(0.04) (0.03) (0.03)
Campus/Major FEs 6/19 6/21 –
R2

OLS 0.257 0.266 0.065

Goodness-of-fit and SAT contribution
R2

p 0.525 0.472 0.504 0.445 0.157 0.132
∆R2

p 0.053 0.059 0.025
∆Rp 0.038 0.043 0.033

Notes: Columns B, D, and F calculated by omitted variables correction; see text for details. School
means calculated within sample.
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Table 4: Prediction Models Incorporating High School Demographics, Pooled Sample

FGPA 5YRGPA GRADIN5
Variable (A) (B) (C) (D) (E) (F)
HSGPA 0.62 0.74 0.54 0.63 0.23 0.24

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
SAT/1000 0.69 – 0.56 – 0.07 –

(0.04) (0.03) (0.03)
High School Demographic Characteristics
Frac. Free Lunch -0.01 -0.01 -0.02 -0.02 -0.10 -0.10

(0.05) (0.05) (0.04) (0.04) (0.04) (0.04)
Frac. Black -0.32 -0.43 -0.31 -0.40 -0.15 -0.16

(0.05) (0.05) (0.05) (0.05) (0.04) (0.04)
Frac. Asian 0.16 0.20 0.14 0.17 0.11 0.12

(0.03) (0.03) (0.03) (0.03) (0.02) (0.02)
Frac. Hispanic -0.18 -0.17 -0.18 -0.17 -0.07 -0.07

(0.05) (0.05) (0.04) (0.04) (0.04) (0.04)
Avg. Parental Ed./100 1.67 5.80 2.48 5.81 1.03 1.42

(0.90) (0.90) (0.83) (0.82) (0.72) (0.71)
Campus/Major FEs 6/19 6/21 –
R2

OLS 0.235 0.242 0.060

Goodness-of-fit and SAT contribution
R2

p 0.472 0.446 0.445 0.424 0.133 0.132
∆R2

p 0.026 0.021 0.001
∆Rp 0.019 0.016 0.001

Note: Columns B, D, and F calculated by omitted variables correction.
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Table 5: High School Input and Output Variables in FGPA Prediction

Variable (A) (B) (C) (D) (E) (F)
HSGPA 0.62 0.74 0.63 0.74 0.64 0.73

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
SAT/1000 0.68 – 0.62 – 0.55 –

(0.04) (0.04) (0.04)
High School Demographic Characteristics
Frac. Free Lunch -0.01 -0.01 0.00 0.00 0.02 0.02

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
Frac. Black -0.18 -0.23 -0.05 -0.00 -0.08 -0.04

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
Frac. Asian 0.11 0.13 0.09 0.10 0.08 0.09

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Frac. Hispanic -0.13 -0.11 -0.15 -0.13 -0.16 -0.13

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
Avg. Parental Ed./100 -2.15 0.06 -5.47 -5.55 -5.24 -5.30

(1.20) (1.20) (1.26) (1.26) (1.26) (1.26)
High School Output Measures
API Score/1000 0.62 0.89 0.25 0.33 0.30 0.38

(0.13) (0.13) (0.13) (0.13) (0.13) (0.13)
SAT/1000, all SAT-takers – – 1.00 1.51 0.47 0.91

(0.12) (0.12) (0.15) (0.15)
SAT/1000, UC matriculants – – – – 0.70 0.72

(0.11) (0.11)
R2

OLS 0.236 0.240 0.242

Goodness-of-fit and SAT contribution
R2

p 0.474 0.449 0.479 0.459 0.477 0.461
∆R2

p 0.025 0.019 0.016
∆Rp 0.018 0.014 0.012

Notes: All columns include fixed effects for 6 campuses and 19 end-of-year majors. Columns B, D,
and F calculated by omitted variables correction.
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Table 6: OLS and Selection-Adjusted Models for FGPA at San Diego Campus

Sparse Model School Demographics Model
Estimator OLS OLS O.V. OLS OLS O.V.

(A) (B) (C) (D) (E) (F)
Panel A: Models without Campus Selection Correction

HSGPA 0.64 0.68 0.83 0.68 0.72 0.81
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

SAT/1000 1.02 0.77
(0.09) (0.09)

R2
p 0.553 0.403 0.484 0.569 0.482 0.537

∆R2
p 0.150 0.068 0.086 0.032

Panel B1: Probit Coefficients for Selection into UCSD Subsample
HSGPA 0.24 0.34 0.29 0.36

(0.04) (0.04) (0.04) (0.04)
SAT/1000 0.62 0.44

(0.10) (0.10)
HS in S.D. County 0.73 0.74 0.63 0.62

(0.07) (0.07) (0.07) (0.07)
HS in other UC Cnty -0.16 -0.15 -0.16 -0.15

(0.05) (0.05) (0.05) (0.05)
Miles to UCSD/100 -0.05 -0.05 -0.06 -0.06

(0.01) (0.01) (0.02) (0.01)
Avg. Log Likelihood -0.343 -0.345 -0.341 -0.342

Panel B2: Selection-Adjusted Models
HSGPA 0.75 0.84 0.93 0.80 0.87 0.93

(0.04) (0.04) (0.04) (0.04) (0.05) (0.05)
SAT/1000 1.01 0.76

(0.09) (0.10)
Inverse Mill’s Ratio 0.33 0.43 0.37 0.44

(0.04) (0.05) (0.05) (0.05)
R2

p 0.538 0.409 0.484 0.550 0.473 0.526
∆R2

p 0.129 0.054 0.077 0.024

Notes: Sample for Panel B1 is the UC sample from Table 1; Panels A and B2 use the subsample of
1,621 San Diego campus observations. All models in all panels include fixed effects for four major
groups; Columns D through F also include the five school demographic measures used in Table 4.
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Table 7: Summary of Campus-Specific OLS and Heckman Models for FGPA

Campus
San Los Santa

Diego Irvine Riverside Angeles Barbara Berkeley Davis
N at campus 1,621 1,644 804 2,468 1,890 2,402 2,168

Panel A: Models without Campus Selection Correction
Sparse Model

SAT Coeff. 1.02 1.12 0.80 1.11 1.08 0.41 0.96
(0.09) (0.09) (0.14) (0.07) (0.09) (0.08) (0.07)

∆R2
p 0.068 0.080 0.034 0.087 0.082 0.013 0.053

School Demographics Model
SAT Coeff. 0.77 0.85 0.55 0.83 0.89 0.27 0.75

(0.09) (0.10) (0.15) (0.08) (0.09) (0.09) (0.08)
∆R2

p 0.032 0.037 0.012 0.041 0.044 0.004 0.025

Panel B: Heckman Selection Models with Geographic Instruments
Sparse Model

SAT Coeff. 1.01 1.18 0.54 1.19 0.85 0.23 1.02
(0.09) (0.10) (0.15) (0.08) (0.13) (0.13) (0.08)

Inverse Mill’s Ratio 0.33 -0.06 0.17 0.19 0.25 -0.12 -0.09
(0.04) (0.04) (0.05) (0.05) (0.10) (0.06) (0.03)

∆R2
p 0.054 0.086 0.016 0.085 0.062 0.004 0.058

School Demographics Model
SAT Coeff. 0.76 0.88 0.42 0.94 0.72 0.32 0.80

(0.10) (0.11) (0.16) (0.09) (0.15) (0.15) (0.08)
Inverse Mill’s Ratio 0.37 -0.03 0.09 0.14 0.14 0.04 -0.09

(0.05) (0.04) (0.05) (0.05) (0.10) (0.08) (0.03)
∆R2

p 0.024 0.039 0.008 0.047 0.033 0.006 0.028

Notes: All models are analogous to those in Table 6. ∆R2
p is calculated using the omitted variables

correction (8).

40



Table A.1: Prospective Evaluation of the University of California’s Four Percent Plan

Mean Predicted FGPA
FGPA Prediction Model: Sparse School Demographics
Sample: Pooled UCR UCSD Pooled UCR UCSD

N (A) (B) (C) (D) (E) (F)
Regular Eligibility Rules

Inframarginal 150,620 2.80 2.64 2.09 2.80 2.81 1.96
Marginal (Comparison) 299 2.30 2.18 1.48 2.30 2.32 1.37

Not Regularly Eligible, by Class Rank (noncumulative)
0.5% 19 2.65 2.59 1.88 2.59 2.64 1.72
1.0% 29 2.53 2.47 1.74 2.48 2.52 1.55
1.5% 39 2.56 2.49 1.77 2.52 2.57 1.59
2.0% 29 2.51 2.45 1.72 2.46 2.51 1.53
2.5% 46 2.47 2.41 1.67 2.43 2.49 1.50
3.0% 54 2.46 2.40 1.66 2.43 2.48 1.49
3.5% 61 2.47 2.40 1.67 2.43 2.49 1.50
4.0% 67 2.45 2.38 1.64 2.41 2.47 1.47

Total, Top 4% (FPP) 344 2.49 2.43 1.70 2.45 2.51 1.52
4.5% 76 2.43 2.36 1.62 2.42 2.47 1.46
5.0% 70 2.38 2.31 1.57 2.35 2.42 1.38
5.5% 74 2.37 2.31 1.56 2.34 2.40 1.39
6.0% 83 2.33 2.26 1.51 2.30 2.37 1.34
6.5% 95 2.30 2.23 1.47 2.26 2.31 1.30
7.0% 95 2.33 2.25 1.50 2.29 2.33 1.34
7.5% 96 2.29 2.21 1.46 2.25 2.32 1.28
8.0% 83 2.24 2.16 1.40 2.20 2.25 1.22
8.5% 117 2.26 2.18 1.42 2.22 2.27 1.25
9.0% 123 2.23 2.14 1.39 2.17 2.23 1.18
9.5% 125 2.22 2.14 1.38 2.17 2.23 1.19
10.0% 120 2.19 2.10 1.34 2.13 2.19 1.14
10.5% 140 2.18 2.09 1.33 2.12 2.17 1.13
11.0% 154 2.18 2.09 1.33 2.13 2.19 1.14
11.5% 155 2.16 2.07 1.30 2.10 2.14 1.10
12.0% 164 2.17 2.07 1.32 2.10 2.15 1.11
12.5% 208 2.16 2.06 1.30 2.09 2.14 1.09

Implied optimal % plan size 7.0% 7.5% 7.0% 6.0% 7.5% 5.5%

Notes: Marginal group would be eligible with 10 extra SAT points. Optimal % plan size is size at
which an additional 0.5% expansion would bring in students with average predicted FGPAs lower
than in the marginal group.
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Figure 1: Kernel Estimates of SAT Distribution in Three Samples
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Figure 2: Effect of Estimator and Included Variables on Estimated SAT Validity
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