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ABSTRACT 
 
 
A regression discontinuity (RD) research design is appropriate for program evaluation 
problems in which treatment status (or the probability of treatment) depends on whether 
an observed covariate exceeds a fixed threshold.  In many applications the treatment-
determining covariate is discrete.  This makes it impossible to compare outcomes for 
observations “just above” and “just below” the treatment threshold, and requires the 
researcher to choose a functional form for the relationship between the treatment 
variable and the outcomes of interest.  We propose a simple econometric procedure to 
account for uncertainty in the choice of functional form for RD designs with discrete 
support.  In particular, we model deviations of the true regression function from a given 
approximating function -- the specification errors -- as random.  Conventional standard 
errors ignore the group structure induced by specification errors and tend to overstate 
the precision of the estimated program impacts.  Allowance for specification error in the 
RD estimation is equivalent to a parametric empirical Bayes procedure.  
 
JEL:  C12, C11 
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I.  Introduction 

 In the classic regression-discontinuity (RD) design [Thistlethwaite and Campbell, 1960] 

the treatment status of an observation is determined by whether an observed covariate is above or 

below a known threshold.   If the covariate is predetermined it may be plausible to think of  

treatment status is “as good as randomly assigned” among the subsample of observations that fall 

just above and just below the threshold.1 As in a true experiment, no functional form 

assumptions are necessary to estimate program impacts when the treatment-determining 

covariate is continuous: one simply compares average outcomes in small neighborhoods on 

either side of the threshold.  The width of these neighborhoods can be made arbitrarily small as 

the sample size grows, ensuring that observed and unobserved characteristics of observations in 

the treatment and control groups are identical in the limit.  This idea underlies the approach of 

Hahn, Todd, and van der Klauww [2001] and Porter [2003], who describe non-parametric and 

semi-parametric estimators of regression-discontinuity gaps. 

    In many applications where the RD idea seems compelling, however, the covariate that 

determines treatment is inherently discrete or is only reported in coarse intervals.  For example, 

government programs like Medicare and Medicaid have sharp age-related eligibility rules that 

lend themselves to an RD framework, but in most data sets age is only recorded in months or 

years.  In the discrete case it is no longer possible to compute averages within arbitrarily small 

neighborhoods of the cutoff point, even with an infinite amount of data.  Instead, researchers 

have to choose a particular functional form for the model relating the outcomes of interest to the 

treatment-determining variable.  Indeed, with an irreducible gap between the “control” 

                                                           
1 This assumption may or may not be plausible, depending upon the context. In particular, if the treatment 
is under perfect control of individuals, and there are incentives to “sort” around the threshold, the RD 
design may be invalid. On the other hand, even when individuals have partial control over the covariate, 
as long as there is a stochastic component that has continuous density, the treatment variable is as good as 
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observations just below the threshold and the “treatment” observations just above, the causal 

effect of the program is not even identified in the absence of a parametric assumption about this 

function. 

 In this paper we propose a simple procedure for inference in RD designs in which the 

treatment-determining covariate is discrete.  The basic idea is to model the deviation between the 

expected value of the outcome and the predicted value from a given functional form as a random 

specification error.   Modeling potential specification error in this way has a number of 

immediate implications.  Most importantly, it introduces a common component of variance for 

all the observations at any given value of the treatment-determining covariate.  This creates a 

problem similar to the one analyzed by Moulton (1990) for multi-level models in which some of 

the covariates are only measured at a higher level of aggregation (e.g., micro models with state-

level covariates).   Random specification errors can be easily incorporated in inference by 

constructing sampling errors that include a grouped error component for different values of the 

treatment-determining covariate.  The use of “clustered” standard errors will generally lead to 

wider confidence intervals that reflect the imperfect fit of the parametric function away from the 

discontinuity point. 

 More subtly, inference in an RD design involves extrapolation from observations below 

the threshold to construct a counterfactual for observations above the threshold.  As in a classic 

out-of-sample forecasting problem, the sampling error of the counterfactual prediction for the 

point of support just beyond the threshold includes a term reflecting the expected contribution of 

the specification error at that point.  Since the estimated (local) treatment effect is just the 

difference between the mean outcome for these observations and the counterfactual prediction, 

the precision of the estimated treatment effect depends on whether one assumes that the same 

                                                                                                                                                                                           
(locally) randomly assigned. See Lee [2003] for details. 
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specification error would prevail in the counterfactual world.  If so, this error component 

vanishes.  If not, the confidence interval for the local treatment effect has to be widened even 

further. 

 The paper is organized as follows. Section II describes the RD framework and why 

discreteness in the treatment-determining covariate implies that the treatment effect is not 

identified without assuming a parametric functional form. Section III describes the proposed 

inference procedure under a model where specification errors are considered random. Section IV 

describes a modified procedure under less restrictive assumptions about the specification errors. 

Section V proposes an alternative, efficient estimator for the treatment effect, and Section VI 

relates the estimator to Bayes’ and Empirical Bayes’ approaches. Section VII concludes. 

 

I.  The Regression Discontinuity Design with Discrete Support 

 To illustrate how discreteness causes problems for identification in an RD framework, 

consider the following potential outcomes formulation.2  There is a binary indicator D of 

treatment status which is determined by whether an observed covariate X is above or below a 

known threshold x0: D=1[X$x0].  Let Y1 represent the potential outcome if an observation 

receives treatment and let Y0 represent the potential outcome if not.  The goal is to estimate  

E[Y1 !Y0 | X=x0 ], the local treatment effect at the threshold.  As usual in an evaluation problem, 

Y1 andY0 are not simultaneously observed for any individual.  Instead, we observe Y = DY1 + 

(1!D) Y0 .   

                                                           
2 For a readable overview of the potential outcomes framework for program evaluation problems see 
Angrist and Krueger (1999). 
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 When the support of X is continuous and certain smoothness assumptions are satisfied, 

E[Y1 !Y0 | X=x0 ] is identified as the discontinuity in the regression function for the observed 

outcome Y at x0.  In particular, if E[Y1  | X] and E[Y0  | X] are both continuous at x0, then  

 E[Y1 !Y0 | X=x0 ]   =  E[Y1  | X=x0]  ! lim ε  60+  E[Y0  | X = x0 !
ε  ]  

           =  E[Y | X=x0]  ! lim ε  60+  E[Y | X = x0 !
ε  ] .  

This idea is illustrated in Figure 1. The data identifies E[Y1 | X=x ] when x$x0, and E[Y0 | X=x] 

when x<x0, as indicated by the solid lines. Because of the discontinuous rule that determines 

treatment status, the data do not provide information on either the dashed lines, or the 

counterfactual mean E[Y0 | X=x0] (the open circle). What the data do yield is E[Y0  | X = x0 !
ε  ], 

which can be an arbitrarily good approximation to E[Y0  | X = x0], with ε  sufficiently small. 

 This limiting argument, however, does not work when the support of X is discrete, as 

Figure 2 illustrates. Let the kth value of X, xk, denote the value of the discontinuity threshold. As 

before, the counterfactual mean E[Y0  | X = xk] is unobservable. But now there is a limit to how 

well it can be approximated. E[Y  | X = xk-1] – the discrete analogue to E[Y | X = x0 !
ε  ] – could 

be a poor approximation, resulting in misleading inferences. For example, in Figure 2, the 

difference between E[Y | X = xk] and E[Y  | X = xk-1] substantially over-estimates the true effect 

E[Y1 !Y0 | X=xk ]. This approximation error is unaffected by sample size, so the asymptotic 

arguments employed by non-parametric and semi-parametric methods are inapplicable when the 

discreteness in X is an important feature of the data. The researcher is forced to extrapolate the 

quantity E[Y0 | X=xk ] using data “away” from the discontinuity threshold. Doing this without 

choosing a parametric form to approximate E[Y0 | X=x ] is impossible. 

 

II. An Alternative Formulation 
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 Many applications of the RD framework are implemented by regressing the outcome Y 

on a low-order polynomial in the treatment-determining covariate X and the binary treatment 

indicator D (e.g., Lee, 2003; Dinardo and Lee, 2004;  Card and Shore Sheppard, 2002; Kane 

2003).  Sometimes other covariates are also included.  Recognizing that X is discrete, let Yij 

represent the outcome for the ith observation with the jth value of X (hereafter, the jth cell) and 

let Zij represent a vector of individual-level covariates.  The conventional set-up assumes that 

(1) E[ Yij | X = xj ,  Zij ]  =   Zij 
φ   +  h(xj , γ ) + Dj 

β
 , 

where φ  is a vector of coefficients,  h(xj, γ ) is some function with coefficients γ ,  Dj is the 

treatment status indicator for subgroup j ( Dj=1[xj $xk] ), and 
β
 is the parameter of interest, 

measuring the discontinuity in the partial regression function for Y at X=xk.
3  In this paper we 

ignore individual-level covariates in Equation (1).  It is straightforward to extend our arguments 

to include them. Moreover, if the RD design is valid they can be excluded, since  

 E[ Yij | X = xj ]  =   E[Zij  | X = xj] 
φ   +  h(xj , γ ) + Dj 

β
  

and in a valid design E[Z|X] should be a smooth function of X.4  Thus E[Y|X] will have the same 

discontinuity at xk as the partial regression function.5 

 Conventional inferences based on a model like Equation (1) may be misleading if the 

functional form of h is mis-specified.  Researchers usually address this concern by plotting the 

mean values of Y against X, and super-imposing the parametric fit from their model.  Ideally, the 

plot confirms that the parametric model provides a good fit for the mean of Y.  Our approach 

                                                           
3 h(.,.) may include interactions between the polynomial terms and the treatment indicator.  This allows 
the regression function to have different derivatives (up to the order of the interaction terms) on either 
side of the threshold. 
4 One way to test the validity of the design is to look for discontinuities in the regression function E[Z|X].  
This is analogous to a test for random assignment based on comparisons of the characteristics of the 
treatment and control groups. 
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builds on this intuitive procedure by recognizing that any functional form is likely to be mis-

specified and computing sampling errors for the estimated discontinuity that are valid not only if 

the functional form is correct, but also when the parametric model is incorrect (White, 1984; 

Chamberlain, 1994). 

 We assume that the cell means for Y, conditional on X, are generated as realizations from 

the process: 

(2) h(xj , γ )  +   Dj 
β
  +   aj,    j=1,2,... J, 

where aj is an i.i.d. specification error with mean 0 and variance σ a
2. The size of σ a

2 reflects a 

researcher’s ignorance about the “true” functional form for E[ Yij | X = xj ].  When σ a
2 is small, 

the functional form is approximately correct and conventional inference is appropriate.  When σ a
2 is larger, however, inference should take account of this uncertainly.  Equation (2) implies 

that the data generating process for the observed outcomes is  

(3)     Yij    =   h(xj , γ )  +   Dj 
β
  +   aj   +  ε

ij ,      i=1,2,...nj ;    j=1,2...J 

where   

   ε
ij  =   Yij  ! E[Yij | X = xj ]. 

Unlike Equation (1), this model has a grouped error structure, reflecting the fact that all the 

observations with X = xj  share the same realization of the specification error. Assuming that the 

specification errors are i.i.d., this model can be estimated by standard feasible GLS procedures.  

For now, however, we focus on the commonly-used alternative of calculating valid “cluster-

consistent” sampling errors for the OLS estimator, which is consistent under the i.i.d. 

specification error assumption. 

                                                                                                                                                                                           
5 A more general functional form than Equation (1) would allow both h and 

β
 to depend on Z. In this case 

the discontinuity in E[Y|X] at x0 is an average of the discontinuities in the partial regression function, 
with weights given by the marginal distribution of Z at X=x0. 
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 Assuming that h is a low order polynomial (or some other basis function), let h(xj,γ ) = 

X j γ  , where Xj is the row vector of polynomial terms in X (including an intercept).  The model 

can then be rewritten as 

(3')     Yij    =    Xj γ   +  Dj 
β
  +  aj   +  ε

ij    =   Wj
θ
  +  aj   +  ε

ij , 

where Wj = (Xj, Dj).  

The consistent estimator for the variance of the OLS coefficients is  

(4) 

V

θ = ∑

j=1

J

∑
i=1

n j

Wj
′Wj

−1

∑
j=1

J

∑
i=1

n j

Wj
′u ij ∑

i=1

n j

Wj
u ij ∑

j=1

J

∑
i=1

n j

Wj
′Wj

−1

  #   

 

 where  
u ij = Yij − Wj


θ  . The computation of these standard errors is available as an option in 

today's statistical software packages. 

Using this variance estimator instead of the conventional formula is intuitive. There are 

only  J   values of  W  that can be used to identify the parametric function. So the precision of the 

estimates should depend not on  n j  , the number of observations for each cell value of  W, but 

rather on  J  , the number of cells. To see this formally, define  
a j ≡ Y j − W


θ   and  

 ij = Yij − Y j  

, where  Y j ≡ 1
n j
∑i=1

n j Yij  . Consider the simple case where  n j = n0   for all  j  . Equation (4) then 

becomes  

(4’) 

V

θ = 1

J ∑
j=1

J

Wj
′Wj

−1

1
J2 ∑

j=1

J

Wj
′Wj

a j
2 1

J ∑
j=1

J

Wj
′Wj

−1

  #   

 

which depends on  J  . Thus, the formula for the clustered standard error is numerically 

equivalent to the heteroskedasticity-consistent standard error of the regression that uses the 

sample means (i.e. at the cell level) instead of the underlying micro-data. Note also, that infinite  



 8

n0   would not shrink this variance estimator to zero.6  

By contrast, the conventional standard error formula that ignores the group-error structure 

would yield 

V

θ = 1

J ∑
j=1

J

Wj
′Wj

−1

1
J2 ∑

j=1

J

Wj
′Wj

a j
2

n0
+ 1

n0
2 ∑

i=1

n 0
 ij

2 1
J ∑

j=1

J

Wj
′Wj

−1

  #   

 

 This latter variance estimator will tend to understate the true variability in 

θ .7 

Furthermore, it will tend to zero as n0   increases, even with  J   fixed -- an unintuitive result, 

since the parameter  θ   is identified by variation across  J   cells. 

 

Extension to Instrumental Variables Applications 

 Many interesting applications of the RD research design arise in situations where a 

program-induced discontinuity in Y1 is used to identify the causal effect of Y1 on some other 

outcome Y2.  Angrist and Lavy (1999), for example, use discontinuities in the mapping from the 

number of students in a grade to average class size to identify the effect of class size on test 

scores.  A very simple version of this setup consists of two equations: 

    Y1ij    =   h(xj , γ )  +   Dj 
β
   +   uij  

                                                           
6When cells have unequal numbers of observations, the formula becomes, 

V

θ = 1

J ∑
j=1

J

njWj
′Wj

−1

1
J2 ∑

j=1

J

nj
2Wj

′Wj
aj

2 1
J ∑

j=1

J

njWj
′Wj

−1

  #   

which is the standard 
heteroskedasticity-consistent standard error from a cell-level regression using the number of observations per cell as 
weights. Note that this is numerically identical to the quantity given by the clustered standard error from the micro-
level regression. Some statistical packages will give slightly different answers for the two methods, due to the finite 
sample correction adjustment, which may differ between the two methods.  
 
7 It is numerically possible for the computed heteroskedasticty-consistent standard error to be larger than 
the cluster-consistent standard error. This is more likely when the specification error variance is very 
small or zero. 
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    Y2ij    =   g(xj , δ )  +   Y1ij 
α  +   vij , 

where (Y1ij, Y2ij) is a pair of observed outcomes for the ith individual in the jth cell, h and g are 

smooth functions (e.g., low order polynomials), Dj =1[xj $xk] is an indicator of treatment status, β
 is the discontinuity in Y1 at xk induced by the treatment effect, α  is the causal effect of Y1 on 

Y2, and (uij, vij) is a pair of potentially correlated errors.  Correlation between uij and vij implies 

that α  cannot be estimated consistently by a simple OLS procedure.  When the functional forms 

of h and g are known, however, α  can be estimated by the instrumental variables (IV) method 

using Dj as an instrument for Y1ij.  The maintained assumptions are that program status has no 

direct effect on Y2, controlling for Y1, and that the partial regression function g is smooth in a 

neighborhood of xk. 

 As in the program evaluation setting, an important concern is that the functional forms of 

h and g are unknown.  A natural extension of our framework is to assume that the data 

generating process for the observed outcomes is  

     Y1ij    =   h(xj , γ )  +   Dj 
β
  +   a1j   +  ε

1ij ,     

     Y2ij    =   g(xj , δ )  +   Y1ij 
α  +   a2j   +  ε

2ij ,      i=1,2,...nj ;    j=1,2...J , 

where (a1j, a2j) represents an i.i.d. vector of specification errors with mean 0 and variance Σ .  

Assuming that these errors are random, the model can be estimated consistently by standard IV, 

using Dj as an instrument for Y1ij.  The conventional IV sampling errors, however, ignore the 

group structure of the residuals and may overstate the precision of the IV estimator, especially if 

the number of observations per cell is large relative to the number of points of support of X.  

(See Shore-Sheppard, 1996, for a discussion of grouped error structures in an IV setting similar 

to Moulton, 1990).  The use of “clustered” standard errors is again a simple remedy (White, 

1984). 
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 To summarize, we propose that in RD research designs where the treatment-determining 

covariate (X) is discrete, researchers report standard errors that are “clustered” by the values of 

X.  Sampling errors estimated in this way use information about the fit of the parametric model 

throughout the range of X to infer the precision of the estimated discontinuity at the treatment 

threshold xk.  It is important to emphasize, however, that clustered standard errors are only 

appropriate for random misspecification error. 

 

III. Incorporating Extrapolation Errors 

Under the assumption of random specification errors, cluster-consistent standard errors 

are adequate for the model given by Equation (3). There is, however, a hidden assumption that is 

required to justify these standard errors: the “specification error” that arises in estimating E[Y0 | 

X=xk ] needs to be equal in direction and magnitude to the error in estimating E[Y1 | X=xk ]. 

This circumstance in illustrated in Figure 3A, which abstracts from sampling error. The 

solid circles represent realized conditional means from the data generating process, the open 

circle represents the unobserved, counterfactual mean under the control regime, and the solid 

lines represent the underlying parametric function. By assuming that ß is equal to the parameter 

of interest E[Y1 !Y0 | X=xk ], it is necessary to also assume that the parametric form understates 

(or overstates) E[Y0 | X=xk ] by the same magnitude as it understates (or overstates) E[Y1 | X=xk 

]; this needs to be true in repeated draws of the specification error. 

There is an alternative formulation of the problem that relaxes this restriction. Once 

specification error is considered to be “random,” one could assume that the error for E[Y1 | X=xk 

] is independent of the error in extrapolating from the data to “forecast” E[Y0 | X=xk ]. This 

possibility is illustrated in Figure 3B, which plots an example of one realization of the data 
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generating process. Here, the parametric form understates E[Y1 | X=xk ] but overstates E[Y0 | 

X=xk ]. As might be expected, since this alternative model is less restrictive, it ought to lead to 

more conservative inferences. Indeed, the cluster-consistent standard errors need to be further 

adjusted to account for this extra degree of uncertainty, as outlined below. 

 

Inference Under Independent Counterfactual Specification Errors 

 To derive the necessary adjustment for the case of independent errors, consider the 

following potential outcomes version of the RD design with specification errors: 

(5a) E[Y0 | X=xj ] =   Xj γ   + aj0,  

(5b) E[Y1 | X=xj ] =   Xj γ   +  
β
  +  aj1,  

where (as in Section II) Y0 and Y1 represent outcomes in the absence and presence of treatment, 

and aj0 and aj1 represent the specification errors for the jth cell in the presence and absence of 

treatment, respectively.  Assume that (aj0, aj1) are jointly normal, i.i.d. across cells, each with 

mean 0 and variance σ a
2.  As in the case where X is continuous, the object of interest in an RD 

framework is 

 E[ Y1 ! Y0 | X=xk]  =   
β
  +   ak1  !  ak0 . 

Given an estimate 

β of the discontinuity in the systematic part of the mean outcome at X=xk, the 

error in the forecast of the actual discontinuity in the potential outcomes is 

 

β − β − ak1 − ak0 . 

Note that this reduces to the sampling error of 

β if and only if ak1 = ak0.  In this case, the 

discontinuity gap in the potential outcome at X=xk is just the discontinuity in the systematic part 

of the mean prediction for Y.  Otherwise, when program status changes from 0 to 1 there is a 

new “draw” on the specification error, and the forecast error is larger.   
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 Arguably a more natural assumption than aj1 = aj0 is that the specification errors are 

independent and normally distributed. It follows that the error has variance  Var

β + 2σa

2
 , and 

hence the interval 

(6)  


β − 1.96 V


β + 2σa

2 ,

β + 1.96 V


β + 2σa

2   #   
 

contains  EY1 − Y0|X = x k    with 0.95 probability.8 The interpretation of this confidence interval 

is similar to conventional confidence intervals, except that here, the parameter  EY1 − Y0|X = x k    

is itself random. Thus, the correct inference statement is that the interval contains  

EY1 − Y0|X = x k    about 95 percent of the time in repeated draws of not only the sampling error 

-- but also the specification errors (and hence  EY1 − Y0|X = x k   ).9 

The interval in (6) strictly contains the usual confidence interval, and therefore leads to 

more conservative inferences. A wider interval is an intuitive result, since uncertainty regarding 

the true functional form ought to lead to more tentative inferences. Another intuitive aspect of 

the interval in (6) is that it collapses to the conventional one when the chosen parametric form is 

exactly correct and  σa
2   equals zero. 

Only one additional quantity is needed to construct the interval -- an estimate of  σa
2   -- 

which can be consistently estimated by 

(7) 

σa
2
≡ 1

N ∑
j=1

J

nj
a j

2 − 1
N ∑

j=1

J

σj
2

  

where N is the total number of (micro-level) observations and σj
2

  is the unbiased estimate of the  

                                                           
8This is approximately true if  ij   are non-normal, since  


β  would be asymptotically normal. 

9 Equation (6) has been called an ``Empirical Bayes'' confidence interval. 
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j th cell variance of  Yij  .10 It is simple to compute this quantity, in two steps. First, the micro-

data are “collapsed” to the cell level, while computing the mean, number of observations, and the 

unbiased estimate of the variance of Y for each cell. Second, the cell-level means of Y are 

regressed on the parametric function of X (along with the dummy variable D), using the number 

of observations per cell as weights. The first term in the above expression is simply the mean 

squared error from this regression. The second term is just the average of the σj
2

 across the J 

cells, multiplied by (J/N). 

In the appendix, we specify the conditions under which 


β − EY1 − Y0|X = x k 

V

β + 2σa

2

d
→ N0,1

 

as J tends to infinity. This justifies the use of the adjusted confidence interval in (6). 

 

IV. Efficiency 

Given the model in Equations (5a) and (5b), the OLS estimator 

β of EY1 − Y0|X = x k   is 

not asymptotically efficient in the class of linear estimators (and neither is the corresponding 

GLS estimator). This is because the parametric regression is essentially the difference between 

the prediction for EY1|X = x k   and the prediction for EY0|X = x k  , as extrapolated from data 

away from the discontinuity threshold. While it is necessary to make such an extrapolation for 

EY0|X = x k   (since this counterfactual is unobservable), it is unnecessary for EY1|X = x k  ; it 

can be estimated by the sample mean Y k . This cell mean can be used to construct a more 

efficient estimator of the treatment effect. 

                                                           
10In some cases, the difference will be negative, in which case the estimate of  σa

2   is zero. 
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Figure 3B illustrate this intuition. In the figure, 

β estimates the discontinuity in the 

function represented by the solid lines. In this particular realization of the data, the treatment 

effect at X=xk is the difference between the solid circle, which is above the parametric fit, and the 

open circle which is below the parametric fit. We cannot know how much the open circle 

deviates from the parametric form, but the cell mean provides information on how much the 

solid circle deviates from the linear approximation. 

More formally, let  

β  and  

γ  be the same estimators as before, except after leaving out 

the data for the kth cell in the regression. Now consider an estimator of the treatment effect of 

the following form: 

(8) 
β∗ =


β + λ Yk − xk

γ +

β

 

Essentially, this is the same estimator, but with an adjustment according to the size of the cell 

mean's deviation from the parametric function. The error in this estimator is 



β − β − ak1 − ak0 + λ xkγ + β + ak1 +  k − xk

γ +

β

 

which has a zero mean. The variance of this estimator is 

V

β + 2σa

2 + λ2Vak1 +  k − xk
γ +


β 

+ 2λC 

β − ak1 − ak0,ak1 +  k − x k

γ +

β

 

Neither  
γ  nor  


β  contain data from the kth cell, so this reduces to 

V

β + 2σa

2 + λ2σa
2 +

σk
2

nk
+ V xk

γ +

β 

− 2λC

β,xk

γ +

β + σa

2  
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Differentiating with respect to  λ   and solving for the first order condition yields the 

optimal  λ  , given by 

(9) 

λ =
σa

2 + C

β,xk

γ +

β

σa
2 + V xk

γ +

β +

σk
2

nk  

The intuition behind this combination is seen by considering the case in which two 

separate parametric forms are used to model the function to the left and the right of the 

discontinuity threshold -- or, in other words, the terms of the parametric function are completely 

interacted with the treatment dummy variable. Use the equality  C

β,xk

γ +

β    =   

V xk
γ +


β    −    C xk

γ,xk
γ +


β  , and note that  C xk

γ,xk
γ +


β = 0   here, because only 

data to the left are used to estimate  xk
γ   and only data to the right are used to estimate  xk

γ +

β 

. The optimal value of  λ   then becomes: 

λ =
σa

2 + V xk
γ +


β

σa
2 + V xk

γ +

β +

σk
2

nk  

When the parametric function is "good", then  σa
2   is relatively small compared to the 

cell-level sampling error  
σk

2

nk   -- due to small specification errors.  λ   will thus tend to 0, and the 

linear combination estimator collapses to the original parametric estimator  

β . On the other 

hand, if the parametric form is a "bad", then  σa
2   will be relatively large. As a result,  λ   will 

tend towards 1, and the combination estimator will converge towards  Y k − xk
γ   -- the 

difference between the cell mean and the "prediction" of  EY0|X = xk    using data on the left 

side of the discontinuity threshold. The combination estimator thus provides a simple way to 



 16

optimally combine two alternative estimators of  EY1 − Y0|X = xk    --  

β  and  Y k − xk

γ  . Note 

that the usual OLS estimator that includes the kth cell can also be written in the same form as 

Equation (8), using the recursive residual formula of Brown, Durbin, and Evans (1975). The 

implied weight by the OLS will in general not be equal to the weight given by Equation (9).11 

The optimal  λ   can be substituted into the expression above to yield the variance of this 

combination estimator: 

(10) 
Vβ∗ = V


β + 2σa

2 − λ2 σa
2 + V xk

γ +

β +

σk
2

nk
 

Note that the first set of parentheses is the error variance as discussed in the previous section. 

Thus, the combination estimator of the treatment effect will always have a smaller error variance 

than the parametric estimator  

β . Note that in adjusting the confidence intervals from the 

previous section, not only must the width of the interval be shortened using the expression 

above, it must be re-centered around the new point estimate  β∗  . 

To make this estimator feasible, it is only necessary to obtain sample analogues to the 

population variances and covariances in the above two expressions.  σa
2   can be estimated by  

σa
2

  as defined in the previous section. The estimator for  V xk
γ +


β   is simply the "standard 

error of the prediction" at  X = xk  , which is a standard option in most statistical packages.  

C

β,xk

γ +

β    =   V


β    +    C xk

γ,

β   can be estimated using the estimated variance of  


β  

and covariance between  

β  and -- as long as the threshold is normalized to be zero -- the 

                                                           
11 Using the recursive residual formula, the OLS coefficient using all observations can be written as 


θ =


θ−k + W′W−1Wk

′ Y k − xγ−k −

β−k  
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estimated intercept  xk
γ  ; again, these quantities are automatically computed in most statistical 

packages. Finally,  
σk

2

nk   can be estimated by the estimated variance of the mean  Yk  . Together, 

these quantities imply an estimator  

λ  , which can be used to construct a feasible version of  β∗  . 

In the appendix, we provide conditions  under which 

β∗ − EY1 − Y0|X = xk 

V β∗

d
→ N0,1

 

where  β∗   and  
V β∗

  are defined by the above expressions, with population quantities 

replaced by their sample analogues. 

 

Summary of Implementation 

By way of summarizing all of the methods proposed in this paper, we recommend the 

following procedure: 

1) Normalize the  X   variable so the threshold is at  0 , so the intercept in the regression can be 

interpreted as the estimate of  EY0|X = xk   . Choose the parametric form for the 

approximation. Run the regression on the micro-data, computing both heteroskedasticity- and 

cluster-consistent (clustering on the individual values of  X  ) standard errors. If the cluster-

consistent standard errors are significantly larger, it suggests non-trivial specification error. If 

relaxing the "identical" counterfactual specification error assumption is desired, proceed to 

the next step. 

                                                                                                                                                                                           

where  −k   deontes leaving out the  k  th cell, and  Wk   denotes the  k  th row of  W  . 
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2) Collapse the data keeping the means, variances, and number of observations at the cell level. 

3) Run the (cell size-weighted) regression using the cell-data. Verify that the point estimate is 

identical to that computed in step 1. Also verify that the heteroskedasticity-consistent 

standard error is identical to the cluster-consistent standard error in step 1 (except for the 

finite-sample correction factor). Use mean squared error from the regression and cell 

variances to compute  σa
2

  as in Equation (8). Adjust standard errors by  2σa
2

 . If a more 

efficient estimator is desired, proceed to the next step. 

4) Perform step 3, except exclude data from the  k  th cell (the "first" cell in which  D = 1 ). 

Using the estimated variances and covariances of the discontinuity coefficients and intercept, 

as well as the  k  th cell variance, compute  

λ  as in Equation (9). Using the  k  th cell mean, 

compute  β∗  ; then compute  
V β∗

 as in Equation (10). 

 

V. Relation to Bayes' and Empirical Bayes' Procedures 

There is a close connection to the proposed estimator  β∗   and Bayes' and Empirical 

Bayes' approaches. As we show below, the confidence intervals provided in Sections IV and V 

can equivalently be viewed as either Bayesian "confidence intervals" or (parametric) Empirical 

Bayes confidence intervals. 

First note that the Equation (7) can be rewritten as 

β∗ = λY k + 1− λ xk
γ +


β − xk

γ
 

The expression in brackets can be viewed as an estimate of  EY1|X = xk    -- an average of the  

k  th cell mean and the predicted value from the regression -- and the term  xk
γ   as an estimate of  
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EY0|X = xk   . 

Consider the simplest Bayesian approach to estimating  EY1|X = xk     −    EY0|X = xk   

. A likelihood for the observed data would be specified; for example,  

Yik ∼ NEY1|X = xk ,σ2  ; assume for sake of exposition that  σ2   is known. Suppose one 

assumes a prior distribution for  EY1|X = xk  EY0|X = xk 
′

  given by  

N B1 B0

′

,
σ1

2 0

0 σ0
2

.

  For  EY1|X = xk   , the posterior distribution would be  

NλYk + 1− λB1,1− λσ1
2   with  λ = σ1

2/ σ2

nk
+ σ1

2
 ; for  EY0|X = xk   , since there is 

no data on the "control" regime at  X = xk  , the posterior is equal to the prior:  NB0,σ0
2  . With 

some re-arrangement, the resulting posterior distribution for  EY1 − Y0|X = xk    is  

NλYk + 1− λB1 − B0    ,    σ1
2 + σ0

2 − λ2 σ
2

nk
+ σ1

2  . Note that under an uninformative 

(diffuse) prior on  EY0|X = xk   , the posterior for the treatment effect will also be 

uninformative. In the case where only data on the  k  th cell is provided, this is intuitive: without 

any outside information, one should not be able to provide an informative estimate of the 

treatment effect. 

What would be reasonable values for  B1  ,  B0  ,  σ1
2

 , and  σ0
2

 ? One possibility is to use 

the data away from the discontinuity point to justify the parameters of the prior distribution. For 

example, a reasonable  B1   might be  xk
γ +


β , the predicted value of  EY1|X = xk    using all 

data to the right of the  k  th cell in a parametric regression. A reasonable value for  σ1
2

  could be 

the variance in that prediction, namely,  V xk
γ +


β + σa

2
 . Analogously, a regression using all 
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data to the left of the  k  th cell, would produce  xk
γ   and  Vxk

γ + σa
2

  as reasonable values for 

the location and scale of the prior on  EY0|X = xk   . Choosing these values for the prior, in fact, 

yields a posterior given by  Nβ∗,Vβ∗ .12 Therefore, the confidence interval described in the 

previous section can be equivalently interpreted as a Bayesian "confidence interval", using the 

regression predictions and its error in the prior distribution. 

This notion of improving upon the estimate for the  k  th cell, by using information from 

other cells, is what underlies the (parametric) Empirical Bayes' approach. Indeed, the estimator  

λYk + 1− λ xk
γ +


β   of  EY1|X = xk    is simply a specific application of the Empirical 

Bayes, "shrinkage"/Stein estimator (see Morris' review of the parametric Empirical Bayes 

approach). The confidence intervals provided in Sections IV and V -- in which the probability 

statement is with respect to the randomness in sampling and randomness in  a  -- are indeed, 

Empirical Bayes confidence regions. 

 

VI. Summary 

This paper draws attention to functional form issues in the estimation of regression 

discontinuity designs, when  X   is a discrete variable. In particular, in the discrete case, the 

conditions for non-parametric or semi-parametric methods are not applicable; indeed, even with 

an infinite amount of data, the treatment effect is not even identified without assuming a 

parametric form. Our goal was to formally incorporate uncertainty in the necessary parametric 

modeling of the underlying RD function. 

We have proposed a procedure for inference that explicitly acknowledges errors in 

                                                           
12  This is true when separate parametric forms are used to estimate the function on the left and the right. 
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whatever parametric functional form is chosen. Instead of assuming that the chosen functional 

form "correctly" describes the underlying regression function, we model the deviations from the 

true conditional means from the parametric function as random specification errors, allowing for 

an unknown variance. This relaxation of the model requires -- at a minimum -- the computation 

of cluster-consistent standard errors (clustered on the distinct values of  X  ), as opposed to the 

conventional OLS standard errors. An even more flexible model of the RD counterfactual 

functions requires further adjustment; the resulting confidence intervals can be formally justified 

as Bayes' or Empirical Bayes' intervals. 

Even though we allow for specification error, there still remains the issue of how to 

choose the functional form for the systematic part of the functional form (i.e. how many 

polynomial terms in  X  ). On the other hand, we consider our approach to be superior to simply 

assuming the parametric form is correct; because the possibility that the functional form is 

correct (zero specification error) is included as a special case, and results in (asymptotically) 

identical standard errors. Useful from a practitioner's perspective, the adjustments that we 

propose are either provided automatically or can be easily computed from variances and 

covariances provided by regression routines in standard statistical packages. 

Throughout the paper, we have assumed that specification errors are assumed to be 

homoskedastic and serially independent – from one cell to the next. A natural extension would 

be to formally test for these assumptions, and relax the model to allow for non-independent 

specification errors between adjacent cells; it is likely that this allowance would lead to tighter 

inferences, since one could take advantage of serially correlated errors to provide more precise 

forecasts of the counterfactual mean. 
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Appendix 

Independent Counterfactual Specification Errors: Asymptotic Distribution 

For the case of independent counterfactual specification errors, we establish conditions 

under which 


β − EY1 − Y0|X = xk 

V

β + 2σa

2

d
→ N0,1

 

After normalizing  Xj   so that the threshold is at  X = 0 , let  wj   denote the variables (excluding 

the constant) in the parametric regression (and  θ  , the corresponding coefficient vector), with 

each variable deviated from its sample mean. Make the following assumptions: 1)  EWj  ≠ 0 , 

2)  
wj ≡ 1

J
wj

∗

 , with  
1
J
∑

j=1
J nj

∗wj
∗′wj

∗ p
→ Vw  , positive definite, 3)  nj = Jnj

∗
 ,  nj

∗
  a finite 

constant with  
1
J
∑j

nj
∗ = n   a positive constant, and 4)  ij = nj ij

∗
 , so that  σj

2 = njσj
∗2

 ,  

σj
∗2

  finite constant. The reason for the first two assumptions is discussed below, while the 

reason for the third and fourth are discussed in the next section. Let  J → ∞ . 

We need to show two things: 1)  

β − EY1 − Y0|X = xk     

d
→ N 0,V


β + 2σa

2
 , 

and 2)  
V


β + 2σa

2

  is a consistent estimator of  V

β + 2σa

2
 . 

First, note that  

β − EY1 − Y0|X = xk     =   


β − β − ak1 − ak0  . The second term, 

by assumption is distributed as  N0,2σa
2  . The first term is simply the element of  


θ − θ   that 

corresponds to the discontinuity gap. We have  
1
J
∑

j
njwj

′wj
p
→    E nj

∗wj
∗′wj

∗
 . Consequently,  
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
θ − θ    =   

1
J
∑j

njwj
′wj

−1 1
J
∑j

njwj
′aj +  j   converges in distribution to  

N 0,Vw
−1Enj

∗2wj
∗′wj

∗aj +  j
2Vw

−1
 . Note that  


θ − θ   is  Op1  , (and not  

Op
1

J  , as in 

the usual case). 

Second, decompose  
1
J2 ∑j

nj
2wj

′wj
aj

2
  into  

1

J2 ∑j
nj

2wj
′wjaj +  j

2

   +    

1

J2 ∑j
nj

2wj
′wj    ⋅  ( 2aj +  jwj θ −


θ    +    wj θ −


θ

2
  , which has probability limit  

Enj
∗2wj

∗′wj
∗aj +  j

2  , since the second summation is  op1  . Thus,  V

θ   is consistent for  

V

θ  . Finally, decompose  

1
N
∑j

nj
a j

2
  as  

1
J

1
n
∑j

nj
∗aj +  j

2

   +    

1
J

1
n
∑j

nj
∗2aj +  jwj θ −


θ    +    wj θ −


θ

2
  , which converges in probability to  

σa
2 + 1

J n
∑j

σj
∗2

 , since the second summation can be shown to be  op1  .  
1
N
∑j

σj
2

   =   

1
J n
∑j

1
n j

∑i
ij
∗2

   +    
1

J2 n
∑j

1
n j

∑i
−2ij j +  j

2
 , which converges to  

1
J n
∑j

σj
∗2

 

, since the second term is  op1  . Thus,  σa
2
≡ 1

N
∑j

nj
aj

2
   −

1
N
∑j

σj
2

  is consistent for  σa
2  . 

We do not consider the assumption of  
wj =

1

J
wj

∗

  to be a literal description of the data 

generating process. Rather, we invoke the assumption in order to justify the asymptotic 

approximation. Without such a modification,  

β − β    −    ak1 − ak0   is  

Op
1

J    −    

Op1  , and would converge in distribution to  N0,2σa
2  . This approximation would 

incorporate the "prediction" error at the expense of ignoring the estimation error in  

β . On the 

other hand,  J

β − β − ak1 − ak0   has an infinite variance. By letting the scale of  w   
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shrink as the sample size grows, the distribution of  

β  is stabilized, allowing our asymptotic 

approximation to incorporate both estimation error and extrapolation error. Note that the error in 

the intercept is  
α − α    =   W θ −


θ    +    

1
J
∑j=1

J aj +  j  . Therefore, in order for the 

intercept to converge in distribution at the same rate as the slope coefficients, the mean of  Wj   

cannot be zero. 

 

Asymptotic Distribution of the "shrinkage" estimator. 

We now establish the conditions under which  

β∗ − EY1 − Y0|X = xk 

V β∗

d
→ N0,1

 

Maintain the four assumptions as specified above, and normalize so that  xk  , the point of 

the threshold is zero. We will prove the result in two steps: 1)  β∗ − EY1 − Y0|X = xk     
d
→   

N0,Vβ∗  , and 2) and  
V β∗

  is consistent for  Vβ∗  . 

First, re-write  
1

J
β∗ − EY1 − Y0|X = 0

  as  
1

J


β − EY1 − Y0|X = 0

   +    


λ Yk −

α +

β   . Define  bJ

′

  as the vector  

1

J


β − EY1 − Y0|X = 0 1

J
Yk −

α +

β


λ

′

 , so that  

1

J
β∗ − EY1 − Y0|X = 0 = fbJ

 . 
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We need to show  bJ   has probability limit  
b′ = 0 0 λ

′

 , and that  JbJ − b   

converges in distribution to  N0,V∗  . If true, then  JfbJ − fb   will converge in 

distribution to  
N 0, 1 λ 0 V∗ 1 λ 0

′

 , by the delta method. The zero in the last 

element of the gradient vector implies that the resulting asymptotic variance does not include the 

variance of  

λ  , or its covariance with any other element of  bJ  . As a result, it will be true that  

β∗ − EY1 − Y0|X = 0
d
→ N0,Vβ∗  . 

To show  bJ
p
→   0 0 λ

′

 , recall that  

β − EY1 − Y0|X = 0   is  Op1  ; 

multiplying by  
1

J  , yields  op1  . Similarly,  Yk    −    
α +


β    =   α − α    +    β −


β    

+    ak    +     k   is also  Op1  ; multiplying by  
1

J   yields  op1  .  

λ   is consistent for  λ  , 

because the sample analogs to each of its parts are consistent. For example, by the same 

argument as in the previous section, the standard estimators for  C

β,α +


β   and  V xk

γ +

β   

are consistent;  σa
2

  is consistent as shown above. Also,  
1

nk
2 ∑i=1

nk Yik − Y k
2

   =   

1
nk
∗nk

∑i=1
nk ik

∗2
   +    

1

J2nk
∗2 ∑i=1

nk 2ik  k    +     k
2    

p
→   σk

∗2/nk
∗

   =   σk
2 /nk  , because the second 

summation can be shown to be  op1  . 

To show  JbJ − b    
d
→   N0,V∗  , we will show that  JbJ − b   converges in 

probability to a sum of random vectors, each either normally distributed or converges to a normal 

distribution. 
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JbJ − b =


β − β

α − α + β −

β

J

λ − λ

+

0

 k

0

+

ak1 − ak0

ak1

0
  

The element in the second vector is  
1
nk
∑i=1

nk ik    =   
1

nk
∗

1

J
∑

i=1
nk ik

∗

 , which converges 

to a normal. The third vector is normal, by assumption. 

The first vector:  

θ − θ   converges to  

Vw−1 1

J
∑j=1

J nj
∗wj

∗′aj +  j
 .  


β − β  can 

thus be expressed as a summation of the form  
1

J
∑j=1

J zj
 , where  zj   is mean zero i.i.d.  

α − α    =   W θ −

θ    +    

1
J
∑j=1

J aj +  j   which converges in probability to  

EWj  θ −

θ  . Thus,  α − α    +    β −


β   is simply a linear function of the elements of  

θ −

θ  , and therefore can be expressed in the form of  

1

J
∑j=1

J zj
 . 

Finally, we must show that  J

λ − λ   can also be expressed as a summation in the 

form of  
1

J
∑j=1

J zj
 . 

J
σa

2
+ C


β,α +


β

σa
2 + V α +


β +

σk
2

nk

−
σa

2 + C

β,α +


β

σa
2 + V α +


β +

σk
2

nk

 

converges in probability to 

J
σa

2
− σa

2 + C

β,α +


β − C


β,α +


β

σa
2 + V α +


β +

σk
∗2

nk
∗
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The numerator can be shown to be a summation in the form of  
1

J
∑j=1

J zj
 . The central limit 

theorem applies. 

We have shown that each of the parts that make up  

λ   is consistent. Those same terms 

are used to construct  
V β∗

 , which is therefore consistent for  Vβ∗  . 
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Figure 1: Regression Discontinuity, Continuous Covariate
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Figure 2: Regression Discontinuity, Discrete Covariate
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Figure 3A: Counterfactual Specification, Identical Errors

Figure 3B: Counterfactual Specification, Independent Errors
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