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ABSTRACT

A regression discontinuity (RD) research design is appropriate for program evaluation
problems in which treatment status (or the probability of treatment) depends on whether
an observed covariate exceeds a fixed threshold. In many applications the treatment-
determining covariate is discrete. This makes it impossible to compare outcomes for
observations “just above” and ‘‘just below” the treatment threshold, and requires the
researcher to choose a functional form for the relationship between the treatment
variable and the outcomes of interest. We propose a simple econometric procedure to
account for uncertainty in the choice of functional form for RD designs with discrete
support. In particular, we model deviations of the true regression function from a given
approximating function -- the specification errors -- as random. Conventional standard
errors ignore the group structure induced by specification errors and tend to overstate
the precision of the estimated program impacts. Allowance for specification error in the
RD estimation is equivalent to a parametric empirical Bayes procedure.

JEL: C12,Cl11
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l. Introduction

In the classic regression-discontinuity (RD) design [Thistlattevand Campbell, 1960]
the treatment status of an observation is determined by whethereamezbsovariate is above or
below a known threshold. If the covariate is predetermined it mgylausible to think of
treatment status is “as good as randomly assigned” among thenplisé observations that fall
just above and just below the threshblds in a true experiment, no functional form
assumptions are necessary to estimate program impacts whetredtiment-determining
covariate is continuous: one simply compares average outcomes innengalborhoods on
either side of the threshold. The width of these neighborhoods can bearbad®ily small as
the sample size grows, ensuring that observed and unobserved chécsctdrbservations in
the treatment and control groups are identical in the limit. ifleid underlies the approach of
Hahn, Todd, and van der Klauww [2001] and Porter [2003], who describe non-paraanétric
semi-parametric estimators of regression-discontinuity gaps.

In many applications where the RD idea seems compelling, howeseg\ariate that
determines treatment is inherently discrete or is only reportedarse intervals. For example,
government programs like Medicare and Medicaid have sharp agsdreledibility rules that
lend themselves to an RD framework, but in most data sets agdyisecorded in months or
years. In the discrete case it is no longer possible to comypertagas within arbitrarily small
neighborhoods of the cutoff point, even with an infinite amount of data. dhstesearchers
have to choose a particular functional form for the model relatingute®mes of interest to the

treatment-determining variable. Indeed, with an irreducible gap eketwthe “control”

! This assumption may or may not be plausible, depending upon the context. In particular, atihentre
is under perfect control of individuals, and there are incentivesad”“around the threshold, the RD
design may be invalid. On the other hand, even when individuals hawa partirol over the covariate,
as long as there is a stochastic component that has continuous density, the tveaiabdmis as good as



observations just below the threshold and the “treatment” observatidnabpae, the causal
effect of the program is not even identified in the absence ofaanp#ic assumption about this
function.

In this paper we propose a simple procedure for inference in RBndesi which the
treatment-determining covariate is discrete. The basic sd@anmodel the deviation between the
expected value of the outcome and the predicted value from a giverohahdtrm as a random
specification error. Modeling potential specification error irs thiay has a number of
immediate implications. Most importantly, it introduces a commonpaorant of variance for
all the observations at any given value of the treatment-determsoweyiate. This creates a
problem similar to the one analyzed by Moulton (1990) for multi-level tsadevhich some of
the covariates are only measured at a higher level of aggregatg., micro models with state-
level covariates). Random specification errors can be eamityporated in inference by
constructing sampling errors that include a grouped error componentfévenl values of the
treatment-determining covariate. The use of “clustered” staretands will generally lead to
wider confidence intervals that reflect the imperfect fithef parametric function away from the
discontinuity point.

More subtly, inference in an RD design involves extrapolation fromneditsens below
the threshold to construct a counterfactual for observations above thlgotdre As in a classic
out-of-sample forecasting problem, the sampling error of the courtigafgprediction for the
point of support just beyond the threshold includes a term reflectirexgeeted contribution of
the specification error at that point. Since the estimatedl)ltremtment effect is just the
difference between the mean outcome for these observations and thefaowatieprediction,

the precision of the estimated treatment effect depends on wioetherssumes théte same

(locally) randomly assigned. See Lee [2003] for details.
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specification error would prevail in the counterfactual world. If this error component
vanishes. If not, the confidence interval for the local treatméattefas to be widened even
further.

The paper is organized as follows. Section Il describes ther&Dework and why
discreteness in the treatment-determining covariate impligsthleatreatment effect is not
identified without assuming a parametric functional form. Sectibmldscribes the proposed
inference procedure under a model where specification errors ardezedsrandom. Section IV
describes a modified procedure under less restrictive assumptiongladgpecification errors.
Section V proposes an alternative, efficient estimator for gwnrent effect, and Section VI

relates the estimator to Bayes’ and Empirical Bayes’ approaches. Selttcam&udes.

l. The Regression Discontinuity Design with Discrete Support

To illustrate how discreteness causes problems for identircéti an RD framework,
consider the following potential outcomes formulafionThere is a binary indicator D of
treatment status which is determined by whether an observed cevériatabove or below a
known threshold x D=1[X>Xg]. Let Y; represent the potential outcome if an observation
receives treatment and lety Yepresent the potential outcome if not. The goal is to estimate
E[Y1-Yo | X=X ], the local treatment effect at the threshold. As usual in dnagan problem,
Y1 andYp are not simultaneously observed for any individual. Instead, we observBY +

(1-D) Yo .

2 For a readable overview of the potential outcomes frameworgrfigram evaluation problems see
Angrist and Krueger (1999).



When the support of X is continuous and certain smoothness assumpticassied,
E[Y1 -Yo | X=X ] is identified as the discontinuity in the regression functiortherobserved
outcomeY at X. In particular, if E[Y, | X] and E[Y | X] are both continuous ag,xhen

E[Y1-Yo|X=x] = E[Y1 | X=x] - lim ..o+ E[Yo [ X =% -¢]

= E[Y | X=¥¢ -lim..or E[Y|X=%-¢].
This idea is illustrated in Figure 1. The data identifies;H[X=x ] when »xXo and E[Yy | X=X]
when x<x, as indicated by the solid lines. Because of the discontinuous ruldeteamines
treatment status, the data do not provide information on either the dhisbesdor the
counterfactual mean EpY X=xg] (the open circle). What the data do yield is E[VX = x -¢ ],
which can be an arbitrarily good approximation to &£[[¥X = X, with & sufficiently small.

This limiting argument, however, does not work when the support of Xscsede, as
Figure 2 illustrates. Let the kth value of X, denote the value of the discontinuity threshold. As
before, the counterfactual mean B[Y X = %] is unobservable. But now there is a limit to how
well it can be approximated. E[Y | X %.§ — the discrete analogue to E[Y | X &% ] — could
be a poor approximation, resulting in misleading inferences. For esanmplFigure 2, the
difference between E[Y | X skand E[Y | X = x.1] substantially over-estimates the true effect
E[Y1 -Yo | X=x ]. This approximation error is unaffected by sample size, soympotic
arguments employed by non-parametric and semi-parametric metleodsygplicable when the
discreteness in X is an important feature of the data. Therchseas forced to extrapolate the
quantity E[Yp | X=X« ] using data “away” from the discontinuity threshold. Doing thihout

choosing a parametric form to approximate &[X=x ] is impossible.

II. An Alternative Formulation



Many applications of the RD framework are implemented by regigshe outcome Y
on a low-order polynomial in the treatment-determining covariatenX the binary treatment
indicator D (e.g., Lee, 2003; Dinardo and Lee, 2004; Card and Shore Sheppard, 2002; K
2003). Sometimes other covariates are also included. Recognizing thaliscrete, let Y
represent the outcome for the ith observation with the jth value bedédfter, the jth cell) and
let Z; represent a vector of individual-level covariates. The conventional set-up assumes tha
(1) ElYi|X=x,Z]1= Zo+ hx,v)+DOB,
where ¢ is a vector of coefficients, h(xy) is some function with coefficientg D, is the
treatment status indicator for subgroup j;€Ix; >x«] ), andp is the parameter of interest,
measuring the discontinuity in the partial regression function fat X=x.® In this paper we
ignore individual-level covariates in Equation (1). It is straightéod to extend our arguments
to include them. Moreover, if the RD design is valid they can be excluded, since

E[Yi|X=x] = ElZ |X=x]l¢ + h(x,y)+ DB
and in a valid design E[Z|X] should be a smooth function 6f *us E[Y|X] will have the same
discontinuity at x as the partial regression function.

Conventional inferences based on a model like Equation (1) may bedmsgjaf the
functional form of h is mis-specified. Researchers usually asldinés concern by plotting the
mean values of Y against X, and super-imposing the paramefrienfittheir model. Ideally, the

plot confirms that the parametric model provides a good fit for thannof Y. Our approach

% h(.,.) may include interactions between the polynomial terms andeidteent indicator. This allows
the regression function to have different derivatives (up to the ofdibe interaction terms) on either
side of the threshold.

* One way to test the validity of the design is to look for discontinuiti¢ise regression function E[Z|X].
This is analogous to a test for random assignment based on compafighascharacteristics of the
treatment and control groups.



builds on this intuitive procedure by recognizing that any functional feriikely to be mis-
specified and computing sampling errors for the estimated discowtthattare valid not only if
the functional form is correct, but also when the parametric medelcorrect (White, 1984;
Chamberlain, 1994).

We assume that the cell means for Y, conditional on X, are gedexrsirealizations from
the process:
(2) h(,y) + DB + g j=1,2,...7,
where ais an i.i.d. specification error with mean 0 and varianée The size oy reflects a
researcher’s ignorance about the “true” functional form for £[ X = x]. Whenoy’ is small,
the functional form is approximately correct and conventional inferene@propriate. When
oi is larger, however, inference should take account of this uncertafiyation (2) implies
that the data generating process for the observed outcomes is
3) Yi = h(x,y) + DB + a +¢j, i=1,2,..n; j=1,2..3
where

gj = Yy - E[Yj | X=x]

Unlike Equation (1), this model has a grouped error structure, rafietiie fact that all the
observations with X =;xshare the same realization of the specification error. Assuimaghe
specification errors are i.i.d., this model can be estimated bgasth feasible GLS procedures.
For now, however, we focus on the commonly-used alternative of calculatiing“cluster-
consistent” sampling errors for the OLS estimator, which is stargi under the i.i.d.

specification error assumption.

®> A more general functional form than Equation (1) would allow both tpandiepend on Z. In this case
the discontinuity in E[Y|X] at xis an average of the discontinuities in the partial regregaiwstion,
with weights given by the marginal distribution of Z at X~=x



Assuming that h is a low order polynomial (or some other basisidactet h(x,y) =
Xjy , where Xis the row vector of polynomial terms in X (including an intercefthe model
can then be rewritten as
(3) Yi = Xy+DBp+ag t+teg = WO+ g +eg,
where W = (X, D).

The consistent estimator for the variance of the OLS coefficients is

o O(FEw) (2] (Fw)) ()

~

where Ui = Yij —W;6 . The computation of these standard errors is available as an aption i
today's statistical software packages.

Using this variance estimator instead of the conventional formufdugive. There are
only J values of W that can be used to identify the parametric function. So the ipreoisthe

estimates should depend not dn , the number of observations for each cell valueVof but

rather on J , the number of cells. To see this formally, defifie= Y; ~WO and & = Y- Y,

, Where Yi =7 22" Yi . Consider the simple case wheg= nNo for all j . Equation (4) then

J -1
WiW,
=1

which depends onJ . Thus, the formula for the clustered standard error is numerically

becomes

e J -1 J
V(9)=<% w) G vvjvvjan
=1 =1

{2 [N

(4)

equivalent to the heteroskedasticity-consistent standard error akeghession that uses the

sample means (i.e. at the cell level) instead of the underlyicrg{tiata. Note also, that infinite



no would not shrink this variance estimator to Zro.
By contrast, the conventional standard error formula that ignoresdahp-grror structure

would yield

—_ J -t J 2 No J -
= Q| ~
V(@) = (% 2 WjWJ> (lez VWV\ﬁ(n—i)*n_ng 8ﬁ>><%z WJ'W">

This latter variance estimator will tend to understate the tramability in 0.’
Furthermore, it will tend to zero a® increases, even withl fixed -- an unintuitive result,

since the parametet is identified by variation across cells.

Extension to Instrumental Variables Applications

Many interesting applications of the RD research design arisetuations where a
program-induced discontinuity in;Ms used to identify the causal effect of ¥n some other
outcome ¥. Angrist and Lavy (1999), for example, use discontinuities in the majmoimgthe
number of students in a grade to average class size to iddmi®ffect of class size on test

scores. A very simple version of this setup consists of two equations:

Yij = hGt,y) + DB + y

SWhen cells have unequal numbers of observations, e th formula becomes,
— L J -1 L J L J -1
2) = ( L ) / L 2 s 4 . i
V(0) = [ 2w || 2w )| 5 2 W
j=1 =1 j=1

which is the standard
heteroskedasticity-consistent standard error frazallevel regression using the number of obsésnatper cell as
weights. Note that this is numerically identicalth@ quantity given by the clustered standard drmn the micro-

level regression. Some statistical packages wit glightly different answers for the two methodse to the finite

sample correction adjustment, which may differ kestvthe two methods.

"It is numerically possible for the computed heteroskedasticty-consistedasiaerror to be larger than
the cluster-consistent standard error. This is more likely when the spiaifieeror variance is very
small or zero.



Y2 = 90, 8) + Yot v,

where (Y, Y2j) is a pair of observed outcomes for the ith individual in the jth bedhd g are
smooth functions (e.g., low order polynomials),A2[x; >Xi] is an indicator of treatment status,
B is the discontinuity in Y at % induced by the treatment effeatjs the causal effect of;Yon
Y., and (y, Vi) is a pair of potentially correlated errors. Correlation betwg and v implies
thata cannot be estimated consistently by a simple OLS procedure. Wéhé&mttional forms
of h and g are known, however,can be estimated by the instrumental variables (IV) method
using O as an instrument forq¥. The maintained assumptions are that program status has no
direct effect on ¥, controlling for Y;, and that the partial regression function g is smooth in a
neighborhood of x

As in the program evaluation setting, an important concern isntdtimctional forms of
h and g are unknown. A natural extension of our framework is to asdqwahéhe data
generating process for the observed outcomes is

Yiij

h(x,y) + OB + a; + e,

Yo = 9(%,9) + Yo+ g +e&y, i=1,2,.pn; j=1,2.7,
where (@, a&;) represents an i.i.d. vector of specification errors with mean OvarianceX.
Assuming that these errors are random, the model can be estooatistently by standard 1V,
using O as an instrument for 1¥. The conventional IV sampling errors, however, ignore the
group structure of the residuals and may overstate the precisiba bf estimator, especially if
the number of observations per cell is large relative to the nuafhmrints of support of X.
(See Shore-Sheppard, 1996, for a discussion of grouped error structurd¥ isetting similar
to Moulton, 1990). The use of “clustered” standard errors is agaim@esremedy (White,

1984).



To summarize, we propose that in RD research designs wheredtradnt-determining
covariate (X) is discrete, researchers report standard ¢hadrare “clustered” by the values of
X. Sampling errors estimated in this way use information aboutttbéthe parametric model
throughout the range of X to infer the precision of the estimatedrdisaity at the treatment
threshold x. It is important to emphasize, however, that clustered standand eme only

appropriate forandom misspecification error.

II. Incorporating Extrapolation Errors

Under the assumption of random specification errors, cluster-conssséatard errors
are adequate for the model given by Equation (3). There is, however, a hgtianption that is
required to justify these standard errors: the “specificaticor’etinat arises in estimating E{Y
X=Xy ] needs to be equal in direction and magnitude to the error in estimating XX ].

This circumstance in illustrated in Figure 3A, which abstracis fsampling error. The
solid circles represent realized conditional means from the gdatarating process, the open
circle represents the unobserved, counterfactual mean under the cegitmaé,rand the solid
lines represent the underlying parametric function. By assumingtisatqual to the parameter
of interest E[Y -Yo | X=X« ], it is necessary to also assume that the parametricuoderstates
(or overstates) E[Y| X=x ] by the same magnitude as it understates (or overstates) Kf¥
]; this needs to be true in repeated draws of the specification error.

There is an alternative formulation of the problem that relalissréestriction. Once
specification error is considered to be “random,” one could assumii¢hartror for E[Y | X=xk
] is independent of the error in extrapolating from the data to ¢&mte E[Yy | X=x ]. This

possibility is illustrated in Figure 3B, which plots an exampleowé realization of the data

10



generating process. Here, the parametric form understatgs| B{¥x ] but overstates E[y|
X=xk ]. As might be expected, since this alternative model isréstsctive, it ought to lead to
more conservative inferences. Indeed, the cluster-consistent standasdneed to be further

adjusted to account for this extra degree of uncertainty, as outlined below.

Inference Under Independent Counterfactual Specification Errors

To derive the necessary adjustment for the case of independers; eonsider the
following potential outcomes version of the RD design with specification errors:
(52) E[Yo|X=x]1= X7 +a,
(Bb) E[Vi|X=x1= Xy +B + a,
where (as in Section Il) ovand Y; represent outcomes in the absence and presence of treatment,
and & and a represent the specification errors for the jth cell in theemiees and absence of
treatment, respectively. Assume thag,(a:) are jointly normal, i.i.d. across cells, each with
mean 0 and varianaa®. As in the case where X is continuous, the object of interest RDa

framework is

E[Y1-Yo|X=x] = B+ & - ao-

Given an estimat@ of the discontinuity in the systematic part of the mean outcodexat the

error in the forecast of the actual discontinuity in the potential outcomes is
(ﬁ‘ﬁ) — (& — &) |

Note that this reduces to the sampling errorﬁoff and only if a1 = ao. In this case, the
discontinuity gap in the potential outcome at X#s¢just the discontinuity in the systematic part
of the mean prediction for Y. Otherwise, when program status ché&mge® to 1 there is a

new “draw” on the specification error, and the forecast error is larger.

11



Arguably a more natural assumption thagn=ago is that the specification errors are

independent and normally distributed. It follows that the error hasmi}im(ﬁ) +203 , and

hence the interval

(6) (3_1'96W13+1.96\/W)

contains E[Y1 — Yo[X = xk] with 0.95 probability The interpretation of this confidence interval
is similar to conventional confidence intervals, except that here, thmpter E[Y1 — Yo[X = x]
is itself random. Thus, the correct inference statement is tiat interval contains
E[Y1 — YoIX = Xx] about 95 percent of the time in repeated draws of not only the sgneplor
-- but also the specification errors (and herf¥: — Yo[X = x] ).°

The interval in (6) strictly contains the usual confidence inteevad, therefore leads to
more conservative inferences. A wider interval is an intuitivaeltiesince uncertainty regarding
the true functional form ought to lead to more tentative inferenaesthar intuitive aspect of
the interval in (6) is that it collapses to the conventional one wieenhtosen parametric form is
exactly correct andci equals zero.

Only one additional quantity is needed to construct the interval -stanate of o3 --
which can be consistently estimated by

J
A2 R 2
Uafﬁ > njajz—ﬁ o4
() o o

~n2 . .
whereN is the total number of (micro-level) observations ard is the unbiased estimate of the

®This is approximately true i€ij are non-normal, sincé would be asymptotically normal.
% Equation (6) has been called an “Empirical Bayes" confidence interval.

12



jth cell variance of Yi .*° It is simple to compute this quantity, in two steps. First, therami
data are “collapsed” to the cell level, while computing the meanbauof observations, and the
unbiased estimate of the variance of Y for each cell. Second, liHevet means of Y are
regressed on the parametric function of X (along with the dummablarD), using the number

of observations per cell as weights. The first term in the abgweegsion is simply the mean

A2
squared error from this regression. The second term is just tregavef theo: across the J

cells, multiplied by (J/N).

In the appendix, we specify the conditions under which
(ﬁ —E[Y1 - Yo[X = Xk]) d

4 N, 1)
JV(ﬁ) + 262

as J tends to infinity. This justifies the use of the adjusted confidence interval in (6)

V. Efficiency

Given the model in Equations (5a) and (5b), the OLS estinflatdrE[Y: — Yo[X = Xi] is
not asymptotically efficient in the class of linear estimat@nd neither is the corresponding
GLS estimator). This is because the parametric regressigss@ntially the difference between
the prediction forE[Y1|X = x«] and the prediction foE[YolX = X«], as extrapolated from data
away from the discontinuity threshold. While it is necessary tkensach an extrapolation for
E[Yo|X = x«] (since this counterfactual is unobservable), it is unnecessaBf{YolX = xi]; it
can be estimated by the sample meééan This cell mean can be used to construct a more

efficient estimator of the treatment effect.

%N some cases, the difference will be negative, in which case the estimafe if zero.
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Figure 3B illustrate this intuition. In the figur@, estimates the discontinuity in the
function represented by the solid lines. In this particular remlizaif the data, the treatment
effect at X=xis the difference between the solid circle, which is above the parafitettind the
open circle which is below the parametric fit. We cannot know how ntluehopen circle
deviates from the parametric form, but the cell mean provides iafmmon how much the

solid circle deviates from the linear approximation.

More formally, let ﬁ and 7 be the same estimators as before, except after leaving out
the data for the kth cell in the regression. Now consider an éstimfathe treatment effect of

the following form:

®) p* =B+ l<7k - (Xk? + B) )

Essentially, this is the same estimator, but with an adjustaw@ording to the size of the cell

mean's deviation from the parametric function. The error in this estimator is

BB~ @ —aw0) + A%y + B+aa + T~ (%7 +B))

which has a zero mean. The variance of this estimator is

V(B) +202 + 2°V(@a + 5« — (%7 + B))
+ ZAC((/B— (a1 — &), & + Tk — (Xk?+ ﬁ))

Neither 7 nor ﬁ contain data from the kth cell, so this reduces to

V(ﬁ) +205+ A%(05 + Gn—%‘ + V(xk?+ ﬁ))
— 2UCB. X7 + B) + 02)

14



Differentiating with respect toA and solving for the first order condition yields the

optimal A , given by

A= Gg + C(E,Xk? + E)
o3+ V(xkj?+ ﬁ) + Gn—zkk

©)
The intuition behind this combination is seen by considering the caséiah \wwo
separate parametric forms are used to model the function to fthantk the right of the

discontinuity threshold -- or, in other words, the terms of the par@nfietiction are completely
interacted with the treatment dummy variable. Use the equal@(ﬁ, Xy + B) =
V(Xk?+ﬂ> — C(Xk?’xk?Jrﬁ) , and note thatc(xk?’xk?“Lﬁ) =0 here, because only

data to the left are used to estimate/ and only data to the right are used to estirr?aféﬂLﬁ

. The optimal value ofA then becomes:

os+ V(xk? + ,3)
- o2+ V(xk? + ﬁ) + 6*2":

n

When the parametric function is "good", themi is relatively small compared to the

ol e :
cell-level sampling errorne -~ due to small specification errorg. will thus tend to 0, and the

linear combination estimator collapses to the original paramesticnator ﬁ . On the other
hand, if the parametric form is a "bad", theré will be relatively large. As a resultd will

tend towards 1, and the combination estimator will converge towards— X7  -- the

difference between the cell mean and the "prediction'Eb¥o/X = Xk] using data on the left

side of the discontinuity threshold. The combination estimator thus prozidesple way to

15



optimally combine two alternative estimators BfY1 — YolX = xk] - B and Yk—X7 . Note
that the usual OLS estimator thatludes the kth cell can also be written in the same form as
Equation (8), using the recursive residual formula of Brown, Durbin, and E8@$§). The

implied weight by the OLS will in general not be equal to the weight given by Equatith (9).

The optimal A can be substituted into the expression above to yield the variatiis of

)

Note that the first set of parentheses is the error variacksaussed in the previous section.

combination estimator:

2
O-sk
N

V(B*) = (V(B) +203) - ,12<a§ +V(x7 + B) +
(10)
Thus, the combination estimator of the treatment effect wilhgddave a smaller error variance

than the parametric estimato@ . Note that in adjusting the confidence intervals from the

previous section, not only must the width of the interval be shortened tn&ngxpression

above, it must be re-centered around the new point estifiate

To make this estimator feasible, it is only necessary to obtaimple analogues to the

population variances and covariances in the above two expressignscan be estimated by

) Rt
Ga as defined in the previous section. The estimator\flé?(ky“Lﬂ) is simply the "standard

error of the prediction" atX = X , which is a standard option in most statistical packages.

CBxF+P) = V(ﬁ> + C(Xk?’ ﬁ) can be estimated using the estimated variancd of

and covariance betweerﬁ and -- as long as the threshold is normalized to be zero -- the

' Using the recursive residual formula, the OLS coefficient using all obsersatan be written as

0 =0+ (WWW, (7k =XV 4 ﬁk)

16



estimated interceptXk¥ ; again, these quantities are automatically computed in maoistista

ol . : , =
packages. FinaIIy,n_kk can be estimated by the estimated variance of the m&anTogether,

these quantities imply an estimat@r, which can be used to construct a feasible versioffof

In the appendix, we provide conditions under which

B E[Y; — YoIX
ﬁ - [1_ Ol _Xk] gN(O,l)

~ ﬁ)
where B* and V(ﬁ are defined by the above expressions, with population quantities

replaced by their sample analogues.

Summary of Implementation
By way of summarizing all of the methods proposed in this paper,ea@mmend the

following procedure:
1) Normalize theX variable so the threshold is &, so the intercept in the regression can be

interpreted as the estimate ofE[Yo[X=X«] . Choose the parametric form for the

approximation. Run the regression on the micro-data, computing both hetestisikyedand

cluster-consistent (clustering on the individual values*of standard errors. If the cluster-
consistent standard errors are significantly larger, it stgges-trivial specification error. If
relaxing the "identical" counterfactual specification errouagsion is desired, proceed to

the next step.

where —K deontes leaving out thl th cell, and Wik denotes thek th row of W .
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2) Collapse the data keeping the means, variances, and number of observations aetet cell |

3) Run the (cell size-weighted) regression using the cell-Watdfy that the point estimate is
identical to that computed in step 1. Also verify that the heteroskaiiasonsistent
standard error is identical to the cluster-consistent standaod ierstep 1 (except for the

finite-sample correction factor). Use mean squared error fromrégeession and cell
. A2 . . . 2

variances to computes, as in Equation (8). Adjust standard errors B@?a . If a more

efficient estimator is desired, proceed to the next step.

4) Perform step 3, except exclude data from theh cell (the "first" cell in whichD = 1).

Using the estimated variances and covariances of the discontiaafficents and intercept,

as well as thek th cell variance, compute?t as in Equation (9). Using th& th cell mean,

—_—

~ V(ﬁ) . .
compute B* ; then compute as in Equation (10).

V. Relation to Bayes' and Empirical Bayes' Procedures

There is a close connection to the proposed estimé/i%r and Bayes' and Empirical
Bayes' approaches. As we show below, the confidence intervals proviBedtions IV and V
can equivalently be viewed as either Bayesian "confidence inteva(parametric) Empirical
Bayes confidence intervals.

First note that the Equation (7) can be rewritten as
pr = I:/lvk +(1- l)(xk?+ ﬁ) } — Xy

The expression in brackets can be viewed as an estima&YatX = Xk] -- an average of the

k th cell mean and the predicted value from the regression -- andrthe&t¢ as an estimate of
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E[YolX = Xi] .

Consider the simplest Bayesian approach to estimdting X = Xk] — E[Yo[X = X]

A likelihood for the observed data would be specified; for example,

Yik ~ N(E[Y1[X = X],6%) ; assume for sake of exposition that? is known. Suppose one

!
assumes a prior distribution for ( EMV1X = xi] E[YolX = X] )

o2 0
N(BlBO)’OO'2
0

R 0.2
N(AYx+ @A - 21)B1,(1-2)0%) with 4= G%/(n_k + G%) : for E[Yo[X = Xk] , since there is

given by

) For E[Yi[X=Xk] , the posterior distribution would be

no data on the "control” regime af = Xx , the posterior is equal to the prioN(Bo,o5) . with
some re-arrangement, the resulting posterior distribution fde[Y1 — YolX =Xxk] s
N(AYk+(@1-A)Bi]-Bo , o0%+063-A%(8 +02)) . Note that under an uninformative
(diffuse) prior on E[YolX=X¢] | the posterior for the treatment effect will also be

uninformative. In the case where only data on #¢h cell is provided, this is intuitive: without
any outside information, one should not be able to provide an informativeatstoh the

treatment effect.

What would be reasonable values 8t , Bo , of , and o5 ? One possibility is to use

the data away from the discontinuity point to justify the parametiethe prior distribution. For
example, a reasonablB: might be X7 + B , the predicted value oF[Y1lX = x«] using all

data to the right of thek th cell in a parametric regression. A reasonable valueforcould be

SR 2
the variance in that prediction, namely,(xky + 'B> *t0a  Analogously, a regression using all
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data to the left of thek th cell, would produce<c? and V(Xk7) + 03 as reasonable values for
the location and scale of the prior deYolX = X«] . Choosing these values for the prior, in fact,

yields a posterior given byN(8*,V(8*)) 2 Therefore, the confidence interval described in the
previous section can be equivalently interpreted as a Bayesiand&oedi interval”, using the

regression predictions and its error in the prior distribution.

This notion of improving upon the estimate for tleth cell, by using information from

other cells, is what underlies the (parametric) EmpiricaleBagpproach. Indeed, the estimator

[}“Yk +(@1- M(Xk?“L ﬂ) ] of E[Y1[X=X«] is simply a specific application of the Empirical
Bayes, "shrinkage"/Stein estimator (see Morris' review of gheametric Empirical Bayes

approach). The confidence intervals provided in Sections IV and V -- ichwhe probability

statement is with respect to the randomness in sampling and randomn@s -- are indeed,

Empirical Bayes confidence regions.

VI. Summary

This paper draws attention to functional form issues in the egtimaf regression

discontinuity designs, whenX is a discrete variable. In particular, in the discrete dase,

conditions for non-parametric or semi-parametric methods are notappli indeed, even with
an infinite amount of data, the treatment effect is not even idhtWithout assuming a

parametric form. Our goal was to formally incorporate uncertamtyne necessary parametric
modeling of the underlying RD function.

We have proposed a procedure for inference that explicitly acknowlesigas in

2 This is true when separate parametric forms are used to estimate the fundtiefefireind the right.
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whatever parametric functional form is chosen. Instead of assutrahdghe chosen functional
form "correctly" describes the underlying regression function, wdeithe deviations from the
true conditional means from the parametric function as random spd&ioifi errors, allowing for

an unknown variance. This relaxation of the model requires -- at ananmi-- the computation

of cluster-consistent standard errors (clustered on the distinetsvaf X ), as opposed to the
conventional OLS standard errors. An even more flexible model of thecdrinterfactual
functions requires further adjustment; the resulting confidence ifdezan be formally justified
as Bayes' or Empirical Bayes' intervals.

Even though we allow for specification error, there still remdinesissue of how to

choose the functional form for the systematic part of the functitorah (i.e. how many

polynomial terms inX ). On the other hand, we consider our approach to be superior to simply
assuming the parametric form is correct; because the pogsihitit the functional form is
correct (zero specification error) is included as a specs#,and results in (asymptotically)
identical standard errors. Useful from a practitioner's persgecthe adjustments that we
propose are either provided automatically or can be easily computed ariances and
covariances provided by regression routines in standard statistical packages.

Throughout the paper, we have assumed that specification errorssameedsto be
homoskedastic and serially independent — from one cell to the nextulnaxtension would
be to formally test for these assumptions, and relax the moddlow far non-independent
specification errors between adjacent cells; it is likely thess allowance would lead to tighter
inferences, since one could take advantage of serially correlated #® provide more precise

forecasts of the counterfactual mean.
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Appendix
Independent Counterfactual Specification Errors: Asymptotic Distribution
For the case of independent counterfactual specification errorsstaldigh conditions

under which

(B-EM-YoX=x]) o 0.1
JV(ﬁ) + 26\?1

After normalizing Xi so that the threshold is a = G , let Wi denote the variables (excluding

the constant) in the parametric regression (ghd the corresponding coefficient vector), with

each variable deviated from its sample mean. Make the followisgrgstions: 1) E[W] # 0 |

%

=1
Wi = =W,

1 J sxppkhiapk P * * L.
2) L with 724 WWTW = Ve nositive definite, 3)N = I N a finite

L, L *— N . = ek 2 _ %2
constant with 7 2= M M a positive constant, and 4*5'1 i € . so that%g = Moy

O finite constant. The reason for the first two assumptions isistied below, while the

reason for the third and fourth are discussed in the next sectiod. et .

We need to show two things: 1{ﬁ_ EY: — YolX = Xk]) S N<O’V<ﬁ> + 26%) ,

RN 2
V(B) +2 ) -~
and 2) ( ( ) ®) is a consistent estimator éf(ﬁ) +203 .
First, note that B— E[Y1 — YolX = x] = ('B_ ﬂ) ~(@a ~a&0) | The second term,
by assumption is distributed N0, 23) | The first term is simply the element &*—6 that

i . / A P * */ *
corresponds to the discontinuity gap. We haij MWW — E[nj Wi W ] . Consequently,
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. 1 W) L W.(a +E
0-0 = (J ZinJWiW‘> 7 25 W@ + 7)) converges in distribution to

— * 2w (a1 ) 2N ~ O i)
N(O, VW EIwi'wi (8 + £)*IVil)  Note that 0 — 6 is Op(L) , (and not p(ﬁ ,as in

the usual case).

185 n2wlwi (a4 )2
Second, decompose 2 S 2L mMwwia = 2 NTwWwi (g +Z)) +

1 2\a/\Ar — ) NN 2
FXmww L 2@ +Ew(0-8) + (Wi(0-8))) | which has probability limit

—_—

* K/ p pk —\2 n
Eln2w'wi (& + €))°] . since the second summation@s(1) . Thus, V<0> is consistent for
A 1 A2 11 f(m 1= )2
V<0> . Finally, decompose WZJ' n; as Jm Zj Ny (@ +7%j) +
11 * L=yl 0_D _ A\ 2
DI LIGCREINY (0-0) + (w(0-9))" , which converges in probability to

+ Ay 1352
oH o . since the second summation can be shown toPbel) . N2-%4 =

2T (Zu &j ) = <Z< —22ii(€)) + )) , which converges tom o 25 O

_ 1
. since the second term R (1) . Thus Z nay Z GSJ is consistent foro3 .

1 *

W, = ——W,

We do not consider the assumption of /3 to be a literal description of the data
generating process. Rather, we invoke the assumption in order to jtrif\asymptotic
. e o)
approximation. Without such a modlflcatlon(ﬁ ﬂ) - (aa—a0) is p(ﬁ -
Op(1) | and would converge in distribution toNO0,203) | This approximation would

incorporate the "prediction” error at the expense of ignoring th@agin error in ,3 . On the

other hand, ‘/j((ﬁ_ﬁ> ~ (@~ akO)) has an infinite variance. By letting the scale \of
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shrink as the sample size grows, the distributionﬁ)f is stabilized, allowing our asymptotic

approximation to incorporate both estimation error and extrapolation Biote that the error in
. W ) 139 (@ +7F, _
the interceptisa—a = (\M<9 N 9) + 3 ijl(a, +E)) . Therefore, in order for the

intercept to converge in distribution at the same rate as the abeffficients, the mean oWV

cannot be zero.

Asymptotic Distribution of the "shrinkage™ estimator.

We now establish the conditions under which

P
BT —EY1—YoIX =x¢] d

N, D

Maintain the four assumptions as specified above, and normalize s&xthahe point of

oS d
the threshold is zero. We will prove the result in two steps:B1)- E[Y1 —Yo[X =Xx] -

—_—

N(O,V(B*)) , and 2) andv(ﬁ*> is consistent forV(5*) .

~ENG-YolX=0]) _ E(B-Ey-YoiX = O]

N
L(ﬁ*
First, re-write 3 as

1<7k - (a + B) >) : Define bf] as the vector

7~ N\

+(B-EM-Yox=01) (V- (a+5)) 2 )

, SO that

7

(&

L(B}_E[Yl—Y(ﬂX: 0]) =fby)
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We need to showb; has probability limit b= ( 004 ) , and that vJ(b; — b)

converges in distribution to N(O,V*) . If true, then JJI(f(bs)—f(b)) will converge in

!

o No(120)v(120)) |
distribution to A0 A0 , by the delta method. The zero in the last
element of the gradient vector implies that the resulting astroptariance does not include the
variance of A , Oor its covariance with any other elementlf . As a result, it will be true that

P d

B* —E[Y1 = Yo|X = 0] - N(O,V(8")) .

To show by > ( 004 ) . recall that B—E[Yi —Yo[X=0] s Op(1) :
1 _ S R -
multiplying by /3 , yields 9 (1) . Similarly, Yx - (‘”ﬁ) = (@-a) + (ﬁ‘ﬁ>

2 .
+ ax + Ex isalso Op(1) ;: multiplying by 3 vyields 0p(1) . 1 is consistent ford ,

because the sample analogs to each of its parts are consister@xample, by the same
argument as in the previous section, the standard estimato@(%fl”rﬁ) and V(Xk?“L ﬁ)

1 Nk v \2
. A2 . . - K=Y,
are consistent; o, is consistent as shown above. A|SO,nE lel( Ik k)

1 Nk x2 1 " (2¢.. T —2y P 2 2
nink 2085k 4 202 2% (eicE + TP o oxlng = oL/ne | because the second

summation can be shown to (1) .

To show v3(bs—b) S NO,V*) | we will show that ¥I(b; - b) converges in

probability to a sum of random vectors, each either normally distdlmrteonverges to a normal

distribution.
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ﬁ—ﬂ 0 A — Ao
J-b)y=| @-+(B-B) |+| =

+ A
J(2-2) 0 0
_.L Nk Li !’]k g*k
The element in the second vectoris 221 &k =y 3 <27 \vhich converges

to a normal. The third vector is normal, by assumption.
. " V. ‘1(i J nrwf (g + € ) -
The first vector: 0 —60 converges to( w) JI ZJ:l W@ e . B—B can
. L3 7 . .
thus be expressed as a summation of the fodn“== ° | where % is mean zero i.i.d.
(a—a) = (W)< - ) + T 4=\ T %1 which converges in probability to
EWD(0-0) Thus, (@—-@) + (ﬁ_ﬁ> is simply a linear function of the elements of

~ I
(9 N 9) , and therefore can be expressed in the form/FDIZi:1 5 .

Finally, we must show that‘/j (’L—ﬂ) can also be expressed as a summation in the

1 J .
form of /3 Zi:lz‘ )
73 6a+CBa+B _ o2+CBa+h

P N PR /2\ 2 A~ > ng
0§+V(a+ﬁ>+i—ik Ga+V<a+ﬂ>+

Nk

converges in probability to

A2 - = PPN
/3 6a—02+C(B,a+p)—CBa+p
0§+V(Zi+ﬁ> +c’n—kk
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15V
The numerator can be shown to be a summation in the formﬁo‘le:lz' . The central limit

theorem applies.

We have shown that each of the parts that makeﬁup’ns consistent. Those same terms

P
are used to construcY(ﬁ ) . which is therefore consistent fof(5*) .
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Figure 1: Regression Discontinuity, Continuous Covariate
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Figure 2: Regression Discontinuity, Discrete Covariate
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Figure 3A: Counterfactual Specification, Identical Errors
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Figure 3B: Counterfactual Specification, Independent Errors
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