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1. Introduction 
Matching estimators have received substantial attention in the recent literature on causal 

inference in observational studies. The basic idea of matching is to mimic a randomized 

experiment ex post. In economics, the majority of applications has been in the context of 

the evaluation of so-called active labor market policy, such as employment and training 

programs. The main ingredient to matching is adjustment for pre-treatment variables, 

which are commonly referred to as covariates. In this connection, the propensity score 

has received particular attention. The propensity score, i.e. the probability of receiving 

the treatment given pre-treatment variables, is an alternative method of adjustment, and 

was initially proposed by Rosenbaum and Rubin (1983, 1984). In recent years, the 

economics literature has increasingly adapted this statistical procedure and has discussed 

matching methods extensively in both empirical and theoretical work.1  

 Matching methods are cast into the framework of a specific causal model that has 

become known as the Potential Outcome Model (POM). The POM for causal inference 

describes a setting in which units are potentially exposed to a set of treatments, and have 

corresponding outcomes or responses associated with each treatment. The causal 

connection of interest is the effect on the outcomes of some particular treatment relative 

to some other particular treatment, often called "control" treatment. Since in reality each 

unit can only be exposed to one treatment, the other treatment states and associated 

potential outcomes for the single unit are counterfactuals.  

In its essence the POM dates back to the work of Neyman (1923 [1990], 1935) 

and Fisher (1935). Fisher is commonly credited for the invention of randomized 

experiments, while Neyman was probably the first one to use a model for a treatment 

effect in which each unit has two responses. Contributions to the development of the 

model include Cox (1958), Cochran (1965), and above all Rubin (1974, 1977), who was 

the first to apply the potential outcome framework to observational studies (cf. 

Rosenbaum, 1995, for further discussion, and Freedman, 1999, for some reflections on 

the history of association and causation in statistics). Due to Rubin's contributions the 

POM is frequently referred to as the "Rubin Model". Related work in economics are 
                                                 
1 Cf., for instance, Hahn (1998), Angrist and Hahn (1999), Hirano, Imbens and Ridder (2000) for efficiency 
issues. Matching applications using the propensity score are manifold, cf. in particular Lechner (1999, 
2000), Dehejia and Wahba (1999), but also Heckman, Ishimura and Todd (1997), Smith and Todd (2002), 
or – for an application using exact matching – Kluve, Lehmann and Schmidt (1999). 
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models for switching regressions (Quandt 1958, 1972) and the earnings model of Roy 

(1951). 

 In general the POM allows for a finite number of treatments, but both theory and 

practice have focused on merely two elements, "treatment" and "control". This is 

intuitively appealing, as a causal effect can only be inferred for one treatment relative to 

some other treatment. However, recent results have made explicit extensions to 

multivalued treatment settings in observational studies possible (Imbens 2000, Lechner 

2001), and some papers have already applied these methods (Larsson 2000, Gerfin and 

Lechner 2000). This paper goes back to the foundations of the causal model, and gives a 

characterization of the causally meaningful counterfactuals that can be assessed within 

the multivalued framework. The theoretical analysis shows that specification of treatment 

states, especially the no-treatment state, plays a particularly important role, and that 

treatment-worlds are not necessarily equidistant, as the model assumes. An application 

from program evaluation using propensity score matching confirms these points. 

 The remainder is organized as follows. Section 2 presents the basic causal model, 

and its applicability using the propensity score for binary treatment and multivalued 

treatment. Section 3 assesses the various counterfactuals arising in the multivalued case, 

and discusses both definition of treatment states, specifically the no-treatment state, as 

well as distance between worlds. Section 4 illustrates these points with an application 

from program evaluation. Section 5 concludes. 

 

2. The Causal Model 

2.1 Basic Setup 

The logical elements of the POM are a quadruple of the form {U,T,D,Y}.2 These 

elements constitute the primitives of the model. U is a population of N units [u1,...,un], T 

is a set of M treatments [t1,...,tm] to which each one of the units u may be exposed, D(u)=t 

                                                 
2 This section follows the discussion of the POM in Holland (1986, 1988), and uses what could be called 
"statistical notation" of a model for causal inference. This terminology has been frequently criticized by 
econometricians (Leamer 1988, Heckman 2000). On the other hand, statisticians have continued to hold 
that this approach to causal inference is the most lucid one (Rubin 1990). Despite the controversy, I find it 
safe to assume – in particular given the substantial recent convergence on issues of causal inference across 
disciplines (documented in Greenland 2000) and the logical equivalence of the POM and recursive 
structural equation models (established in Galles and Pearl 1998) – that this notation is comprehensible for 
everyone. 
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indicates that unit u is actually exposed to a particular treatment t out of T, and Y(u,t) 

equals the value of the outcome that would be observed if unit u∈U were exposed to 

treatment t∈T. U and T are sets, D is a mapping of U to T, and Y(.) is in general a real-

valued function of (u,d).  

 The response variable Y depends on both the unit u and the treatment t to which 

the unit is exposed. If u were exposed to some t1∈T, the observed value of the outcome 

would be Y(u,t1), and if u were exposed to some t2∈T, the observed response would be 

Y(u,t2). The meaning of Y to be a function of pairs (u,t) is that it represents the 

measurement of some characteristic of u after u has been exposed to t∈T, implying that it 

must be possible for any unit in U to be potentially exposed to any treatment t out of T. 

This condition entails a certain notion of what is a cause, preventing us from interpreting 

associational relations as causal ones, like, e.g., associations between sex and income or 

between race and income.  

 Call Y the outcome function and let Yt(u)=Y(u,t). The mapping D is called the 

assignment rule because it indicates to which treatment each unit is exposed. The 

observed outcome of each unit u∈U is given by YD(u)=Y(u,D(u)), which is the value of 

Y that is actually observed for unit u. Therefore, the pair (D(u),YD(u)) – where D(u) 

indicates the treatment in T to which u is actually exposed – constitutes the observed data 

for each unit u. Note the distinction between YD(u) and Yt(u): While the former is the 

outcome actually observed on unit u, the latter is a potential outcome being actually 

observed only if D(u)=t. The basic causal parameter of interest is 

 

(1) The unit-level treatment effect (UTE):  

The unit-level causal effect of treatment t∈T relative to treatment c∈T (as 

measured by Y) is the difference Yt(u)-Yc(u)=UTEtc(u).3 

 

There are three things to note about this definition. First, the causal effect UTEtc(u) is 

                                                 
3 Note that the two treatments in this definition are denoted with t (like "treatment") and c (like "control"). 
This hints at the idea of randomized assignment of units into an experimental treatment or control group. It 
also gives a particular flavor to the definition of an effect of one treatment relative to a control treatment, 
where the term "control" usually implies "no treatment". Moreover, note that the notation Etc is meant to 
indicate the causal effect of "t relative to c". 
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defined at the individual-unit level. Second, UTEtc(u) is the increase in the potential value 

of Yt(u) over the potential value of Yc(u). Third, UTEtc(u) is defined as the causal effect 

of t relative to c. Since it is impossible to simultaneously observe Yt(u) and Yc(u), the 

causal effect UTEtc(u) is never directly observable. Holland (1988) emphasizes how the 

POM makes the unobservability of the causal effect explicit in separating the observed 

pair (D,YD) from the function Y.  

 

2.2 Applicability 

Following the exposition of the basic model, I will first discuss one crucial assumption 

and subsequently review the conditions under which it is possible to assess potential 

outcomes and infer meaningful causal statements. 

The stable-unit-treatment-value-assumption (SUTVA) is the pivotal assumption 

ensuring that the causal framework of the POM is adequate in practice. SUTVA is 

advocated by Rubin (1980, 1986) to play a key role in deciding which questions are 

formulated well enough to have causal answers. It is the a priori assumption that the 

value of Y for unit u when exposed to treatment t is the same independent of (1) the 

mechanism that is used to assign t to u, and (2) what treatments d the other units v≠u 

receive, and that this holds for all n units within U and m treatments within T. SUTVA is 

violated when, for instance, there is interference between units that leads to different 

outcomes depending on the treatment other units received, i.e. Ytu depends on whether 

v≠u received t or some other d∈T, or there exist unrepresented versions of treatment or 

versions of treatments leading to "technical errors" (Neyman 1935)4, i.e. Ytu depends on 

which (unintended) version of treatment t unit u was exposed to. 

Unit homogeneity is a name given by Holland (1986) to the assumption that the 

responses of all units to a particular treatment are the same, i.e. Yt(u)=Yt(v) ∀ u,v∈U, 

t∈T. This is a partial specification of Y in that it restricts the values that Y can take on 

                                                 
4 For further detail cf. Rubin (1980) and Rubin's (1990) discussion of Neyman (1923 [1990]). In Neyman's 
work the notion of potential outcomes is based on the methodological discussion of agricultural 
experiments (cf. also Speed 1990). In that context, possible violations of SUTVA are apparent: How should 
one avoid neighboring plots treated differently (by, e.g., different fertilizers) to "interfere" given nature's 
powers (wind, rain etc.), or in how far can one claim that each bag of fertilizer represents exactly the same 
treatment as any other bag of fertilizer (Rubin 1986)? Moreover, as Rubin (1990) points out, interference 
between units can be a major issue when studying medical treatments for infectious diseases, or educational 
treatments given to children who interact with each other. 



 6

but does not specify them completely. The assumption is only likely to be justified if one 

can claim to be working with a homogeneous sample. Under unit homogeneity, the 

causal effect of treatment t relative to a treatment c is given by UTEtc(u)=Yt(u)–

Yc(v)=Yt(v)–Yc(u) for any two distinct units u and v in U. In this case, UTEtc is a 

constant and does not depend on the unit under scrutiny. Evidently, unit homogeneity 

solves the fundamental problem of causal inference in that one only needs to measure the 

two (observable) outcomes YD(u)=t(u) and YD(v)=c(v) for two units u and v to infer the 

causal effect of t relative to c on any unit within U.  

Unless unit homogeneity holds, individual effects are impossible to observe. 

Thus, one of the most important causal parameters is the average causal effect of a 

treatment, as it represents a useful summary of the unit-level treatment effects5.  

 

(2) The average treatment effect (ATE) of treatment t∈T relative to treatment c∈T is 

the expected value of the unit-level difference Yt(u)-Yc(u) over all u∈U: 

ATEtc=E(UTEtc)=E(Yt-Yc)=E(Yt)-E(Yc). 

 

The ATE is an unobserved quantity, since expectations of Y for both t and c are taken 

over the full range of U. In practice it is only possible to observe D(u) and YD(u) over U, 

and therefore only the joint distribution of D and YD rather than D and {Yt: t∈T}. The 

average value of the observed outcome YD among all those units actually exposed to a 

particular treatment t∈T can be written as E(YD|D=t). For the two particular treatments t 

and c this becomes E(YD|D=t)=E(Yt|D=t) and E(YD|D=c)=E(Yc|D=c), respectively. These 

two quantities are always observed in the data, and yield the following parameter. 

 

(3) The prima facie average treatment effect (FATE) of treatment t∈T relative to 

treatment c∈T is the difference in average responses between those units actually 

                                                 
5 In practice, further questions arise as to whether it is e.g. the "average treatment effect on the treated", or 
the "average treatment effect on the population" etc. that is the causal parameter of interest, and how each 
of these can be estimated. These questions have given rise to an extensive "treatment effect literature" 
(Heckman 2000). See e.g. Heckman (1992) and Heckman, LaLonde, and Smith (1999) for discussion, and 
Angrist, Imbens, and Rubin (1996a) for Instrumental Variables in the POM and identification of the "local 
average treatment effect" (LATE). 
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exposed to t and those units actually exposed to c: FATEtc=E(Yt|D=t)-E(Yc|D=c).6 

 

The distinction between FATE and ATE emphasizes the fact that the quantity that is 

always computable from the data (FATE) does in general not equal the quantity about 

which one desires to draw inferences (ATE). This results from the difference between 

E(Yt) and E(Yc) on the one hand and E(Yt|D=t) and E(Yc|D=c) on the other hand. The 

two quantities are only equal when independence holds. Suppose that the determination 

of which treatment a unit is exposed to is statistically independent of all other variables, 

in particular the response function. Following common practice using Dawid's (1979) 

notation of independence "C ", this can be written as DC {Yt: t∈T}.  

 

(4) If DC {Yt: t∈T}, then the prima facie average treatment effect of treatment t∈T 

relative to treatment c∈T is equal to the average treatment effect of t relative to c: 

FATEtc=E(Yt|D=t)-E(Yc|D=c)=E(Yt)-E(Yc)=ATEtc. 

 

The independence assumption is the key point to the applicability of the model, as it 

allows inference on the unobserved causal parameter of interest, the ATE, directly from 

the FATE, which one can always compute or estimate from the data. 

 Under which conditions is independence likely to hold? The most probable case 

in practice is a randomized experiment, in which – coarsely speaking – units are 

randomly assigned to different treatments, so that the initial population and the 

subpopulations in the treatments do not differ from each other on average. This makes (4) 

likely to hold, yielding the ATE from the FATE. Holland (1988) describes the relation 

between randomization and independence as follows: Independence is an assumption 

about the data collection process, i.e. about the relation of D and Y over the population U, 

while randomization is a physical process that gives plausibility to the independence 

assumption in many important cases. For instance, if U were infinite, then the law of 

                                                 
6 Holland (1988) calls this parameter "prima facie average causal effect FACE". It is not to be confused 
with a "prima facie cause" as defined by Suppes (1970) in his probabilistic theory of causation (cf. Suppes 
(1970) for the original definition and e.g. Sobel (1995) or Salmon (1980) for a discussion): Given two time 
values t and t* with t<t*, the event ct is a prima facie cause of the event et* if Prob(et*|ct)>Prob(et*), i.e. c 
temporally precedes e and is positively relevant to it. Cf. also Skyrms (1988) for a discussion of the relation 
between probability and causation.  
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large numbers together with randomization would imply that (almost) every realization of 

D would be independent of {Yt}. However, randomization does not necessarily make 

independence plausible in each and every case, as randomization does not assure that 

each and every experiment is "adequately mixed", but only that "adequate mixing" is 

probable (Leamer 1983). To take the simplest example, imagine that U consisted only of 

very few units. Then the plain physical act of randomization would not render the 

independence assumption plausible. 

 The meaning of populations that do not "differ" from each other and "adequate 

mixing" in randomized experiments becomes clear through introducing other variables 

into the model. So far Y was the only variable measured on the units u – apart from the 

treatment indicator D. Let us now add a variable X to the model, where X can be real-

valued or vector-valued. In principle, X(u,t) is defined on U×T and depends on both u 

and t. However, there is a special class of X-variables that are of specific interest, as 

defined in Holland (1988): 

 

(5) X is a covariate if X(u,t) does not depend on t for any u∈U. 

 

If we consider specifically the values the X-variables take on prior to treatment, then the 

X-variables are always covariates. Randomization on average guarantees balancing of 

covariates – observable and unobservable – across subpopulations in different treatments, 

which in turn makes the independence assumption plausible, so that (4) holds and the 

ATE can be inferred from the FATE. In the words of Rosenbaum and Rubin (1983): With 

"properly collected data in a randomized trial", X is known to include all covariates both 

used to assign treatments and possibly related to the response {Yt}. 

Covariates are of particular importance in the model in cases in which there is no 

randomization and one cannot arrange the values of D(u) to achieve independence. In 

such an observational study the interest remains in inferring causal effects of treatments, 

but now D is not automatically independent of {Yt}. Given (observable) covariate(s) X 

one could check the distribution of X for subgroups in each treatment by comparing the 

values of Prob(X=x|D=t) across the values of t∈T (Holland 1988). If there is evidence 

that Prob(X=x|D=t) depends on t, then the independence assumption may not appear 
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plausible. Instead, in the nonexperimental setting one usually builds on a weaker 

conditional independence assumption which says that treatment assignment and the 

response are conditionally independent given a vector of covariates: 

 

(6) [Rosenbaum and Rubin 1983:] Treatment assignment is strongly ignorable if the 

response {Yt: t∈T} is conditionally independent of treatment assignment D given 

the observed covariates X, i.e. {Yt}CD|X, and 0<Prob(D=t|X=x)<1. 

 

Strong ignorability is the basis for all causal inference on covariate-adjusted treatment 

effects in observational studies (Holland 1988). Adjusting for covariates yields the 

covariate-adjusted prima facie average treatment effect (C-FATE) based on conditional 

expectations: 

 

(7) C-FATEtc=E{E(Yt|D=t, X) – E(Yc|D=c, X)}. 

 

Just like the FATE, the C-FATE does in general not equal the desired ATE. This only 

holds under conditional independence. 

 

 

2.3 The Propensity score (i): Binary Treatment  

For the two-treatment case T={0,1}, Rosenbaum and Rubin (1983) show that (6) also 

holds for a balancing score B(X) defined as a function of the observed covariates X such 

that the conditional distribution of X given B(X) is the same for the exposure groups 

(D=t), i.e. XCD|B(X). Rosenbaum and Rubin (1983) identify all functions of X that are 

balancing scores, the most trivial one being B(X)=X, and the coarsest one being the 

propensity score.  

 

(8) The propensity score is the conditional probability of receiving the treatment 

given the pre-treatment variables, i.e. P(x)=Prob(D=1|X=x). If treatment 

assignment is strongly ignorable given the covariates, then treatment assignment 

is strongly ignorable given the propensity score, i.e. {Yt}CD|P(x) ∀ t∈T. 
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This result is of particular interest in practice, as it reduces the potential problem of 

conditioning on a high-dimensional X to conditioning on a scalar, provided that P(X) is 

known.  

 

2.4 The Propensity score (ii): Multivalued treatment  

Imbens (2000) and Lechner (2001) extend this result from the case of binary treatment to 

the case of multivalued treatment, in which T contains M treatments [t1,...,tm].  

 

(9) The generalized propensity score is the conditional probability of receiving a 

particular level of treatment given the pre-treatment variables, i.e. 

Rt(X)=Prob(D=t|X=x). If treatment assignment is strongly ignorable given the 

covariates, then treatment assignment is strongly ignorable given the generalized 

propensity score, i.e. {Yt}CD|Rt(X) ∀ t∈T. 

 

Thus, it is possible to estimate average outcomes by conditioning solely on the 

generalized propensity score. This result opens up the enormous potential of propensity 

score matching in cases when treatment is multivalued. 

 

 

3. Possible Worlds 

 

The delineation of the POM in the previous section has shown that the model is based on 

causation in counterfactual terms, since for each unit all outcomes except one are not 

observed, i.e. they are counterfactual outcomes. A rigorous theory of causation in terms 

of counterfactuals has been developed for the first time by Lewis (1973b). In deriving 

logical properties of counterfactual conditionals, i.e. counterfactual statements, Lewis 

shows that causal dependence between two events a and b exists, if – given that a and b 

are actual occurrent events – if a had not occurred, then b would not have occurred. The 

framework for this analysis is given by the idea of closest possible worlds (Lewis 1973a): 

From the perspective of the actual world in which a and b occur, the counterfactual 

conditional "If a had not occurred, then b would not have occurred" is logically true if the 
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world in which they do not occur is the closest possible world to actuality.7 

 This (simplified) exposition of Lewis's theory extends to the POM in a 

straightforward fashion. In the POM, the actual world is given by some treatment t1 

(=event a) that results in an outcome Y1 (=event b). The counterfactual conditional that 

describes the closest possible world translates to "If t1 had not occurred, then Y1 would 

have not occurred". What is the closest possible world that makes this counterfactual 

true? In the case of binary treatment, there is only one possible world, i.e. the world in 

which t2, the control treatment, occurs, and yields outcome Y2. This world is 

mechanically closest and the comparison between the two worlds makes the 

counterfactual true and therefore t1 and Y1 causally dependent. 

 In the case of multivalued treatment this is the same for any two treatments. As 

causal inference in the POM relates two treatments and their respective outcomes, the 

two worlds set in relation are always closest, and the counterfactual conditional is 

automatically true. Appendix A delineates this result in detail. The bottom line here is 

that causation in terms of counterfactuals is based on the idea of closest possible worlds 

(cf. also Robins and Greenland 2000), where the causal effect is defined by the difference 

between the two outcomes in an "actual" world and a "closest" world. 

 

3.1 The no-treatment state 

To formalize this idea, let W denote a set of M worlds, i.e. W={W0,W1,…,Wm-1}, such 

that each world Wi∈W is defined by a particular treatment ti and the associated outcome 

Yi. Since W=W0∪W1∪…∪Wm-1 and Wi∩Wj=∅ for all Wi,Wj∈W, W is meant to consist 

of exactly M mutually exclusive treatment-worlds. This captures the notion that there is 

no interference between treatment-worlds, and no unrepresented versions of treatment 

exist.  

Moreover, let Ω denote the universal set comprising all possible worlds that differ 

only with respect to these two elements, so that W⊆Ω.8 In general, W does not need to 

equal Ω, if we regard W as entailing just those worlds where the types of treatment ti can 

                                                 
7 "Actuality" means "world of point of view", i.e. "actual world" refers at any world Wi to that world Wi 
itself. 
8 This account still considers a finite number of treatments. For an extension of the model to the case where 
the set of treatments is not finite see Pratt and Schlaiffer (1988). 
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either be controlled or at least observed, i.e. W is meant to comprise those worlds with 

well-defined types of treatment. The complement W' of W is then given from Ω=W∪W' 

and contains treatment-worlds outside the controlled or observed domain. For the 

complement, too, it is in principle possible to construct valid comparisons and infer 

causal relations, as W' as a whole can always be defined recursively as "anything that is 

not W".  

Taking into account the complement W' illustrates the distinction between what 

could be called a controlled control treatment and an uncontrolled comparison treatment. 

Consider the case of binary treatment, i.e. M=2 and the causal effect of interest is that of 

treatment t relative to treatment c. In a randomized medical trial, for instance, where t is 

the medicament under study and c is a placebo, c represents a controlled control 

treatment. It is (a) controlled by the experimenter, and (b) a distinct alternative treatment 

in its own right, which is not merely characterized by the absence of t. In this case, 

W={Wt,Wc} and W'=(Wt∪Wc)', where W' entails some unspecified treatment(s) outside 

W characterized by not given the medicament and not given the placebo. Of course, W' 

might not be of interest in the study, or we might not even be able to obtain any 

information about it. On the other hand, consider the case of an observational study in 

labor economics, for instance, evaluating some government training program (=treatment 

t). In this case, the alternative treatment c is characterized retrospectively by the absence 

of training, so that c represents an uncontrolled comparison treatment. It is (a) not under 

control of the researcher, and (b) not defined on its own, but just by the absence of t. In 

this case, W={Wt} and W'=Wc.  

Note that the distinction between "controlled control treatment" and "uncontrolled 

comparison treatment" does not imply that the one produces valid causal inference, and 

the other does not. It is well known that placebos are used to learn something about "not 

given the medication", and in that respect may perform better than "actually not given the 

medication", since with placebos the control units cannot be influenced by knowing that 

they are not given the medication. Use of placebos ensures that the response is to the 

treatment itself, not the idea of treatment. Hence, the controlled control treatment gives a 

well-defined no-treatment state, while the uncontrolled comparison treatment remains 
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more vague.9  

This distinction highlights that it is important to know which treatment 

characterizes a specific world, and in particular which world gives a sufficient description 

of the no-treatment state. In the binary case, experiments usually guarantee a well-defined 

setup. If experimental data is not available, the treatment-world Wt is the only one that is 

specified, and the causal effect is inferred relative to the complement W'. This defines the 

no-treatment state as "any other alternative to treatment", and it may not always be 

straightforward to ensure that this no-treatment state, recursively defined, contains no 

confounding element. In the case of multivalued treatment, experiments also tend to 

ensure well-defined treatment-worlds, and W' retains the interpretation of "outside" 

worlds. Consider for instance a dose-response experiment, in which several treatment 

groups are exposed to different levels of a medicament, and one group is given a placebo. 

In an observational study with various treatments the no-treatment state is still defined 

recursively through the absence of all other treatments. Because now several treatments 

are well-specified, the uncertainty regarding the no-treatment state decreases, and it is 

less likely to contain confounders. However, due to the assumption that many treatments 

are now well-specified, this case does not retain the convenient interpretation of 

treatment t relative to anything-that-is-not-t. 

 

3.2 Counterfactuals and Causal Effects 

Within the set of treatment-worlds W the causal effect of treatment ti relative to treatment 

tj (with ti,j∈T, T⊂W) is given by 

 

(10) jiij YY −=∆  

 

which follows from the counterfactual analysis outlined above. Let W0 denote the world 

                                                 
9 Experimental settings do not necessarily imply a well-defined control treatment. While this is usually a 
straightforward exercise in medical experimental studies of the type described above, it is far more difficult 
in experimental studies in labor economics, e.g., due to the length of treatment (several months of 
participation in a training program) and the difficulty of defining a proper alternative. One example is the 
experimental evaluation of the National Supported Work Demonstration (NSW) in the US: "Those 
assigned to the treatment group received all the benefits of the NSW program, while those assigned to the 
control group were left to fend for themselves." (LaLonde 1986, emphasis added) 
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specifying the no-treatment state, i.e. the absence of any treatment, be it controlled or 

uncontrolled, defined uniquely or recursively. Then, in the binary case, W={W0,W1}with 

W0=W1' and  

 

(11) 1001'11'11 YYYY ∆=−=−=∆  

 

Almost all causal inference studies focus on this basic case with two treatment-worlds 

that differ solely by the treatment under study, and the comparison world is characterized 

by the no-treatment state which equals the absence of treatment. In the case of 

multivalued treatment there are at least two "real" treatments besides W0. This has several 

important implications. First, consider particular treatments ti, tj, tk and the following 

simple decomposition: 
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Of particular interest is the special case where tk=t0. 

 

(12a) 0j0iij ∆−∆=∆  

 

(Of course, if tk≠t0 in (12) we can only use the decomposition if M>3). Expression (12) 

shows that any causal comparison between two treatments is implicitly always related to 

any other baseline-treatment within W. The case in which the no-treatment state is the 

baseline (12a) is of particular interest, since causal effects are usually inferred relative to 

the absence of treatment. This relating of causal comparisons between two treatments – 

neither of which is the no-treatment state – to the no-treatment state is also necessary to 
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identify the level of effects. 10 

For the binary case property (11) has shown that the causal comparison of some 

treatment ti relative to the absence of ti equals the comparison of ti to the no-treatment 

state. As outlined in the previous section this does not hold for a causal comparison of ti 

relative to ti' in the multivalued case. There are two aspects to the ti-versus-ti' relation in 

this context. First, we have the basic result that 0i'ii ∆≠∆  because ti'≠t0 and 0'i YY ≠ . 

This can be seen when we consider what the effect of ti relative to ti' actually is: 
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where ∑wk=1 and, for instance, 

 

(13a) 
1M

1ww k −
==   or  (13b) 

)tt(P1
)tt(P

)tt(P

)tt(Pw
i

k
1M

ir,0r
r

k
k =−

=
=

=

=
=

∑
−

≠=

 . 

 

The causal effect of treatment ti relative to ti' as given in (13) is thus the difference in 

outcomes under ti and ti'  (first line), which equals the difference between the outcome 

under ti and some function of the outcomes under all other treatments except ti (second 

line), which could in an empirical application equal the difference between the outcome 

under ti and the weighted sum of all other outcomes (third line). The function of the 

outcomes under all other treatments in Wi' gives the absolute counterfactual to treatment 

ti, as it is a summary expression of all counterfactual possible worlds. Examples of 

weight functions for empirical work are given as (13a) equal weights, and (13b) the 

                                                 
10 If the effect of ti is positive relative to no-treatment, and the effect of tj is negative relative to no-
treatment, then the effect of ti is strongly positive relative to tj. Looking only at the last effect does not 
reveal the negative effect of tj relative to no-treatment. Similarly, the effect of ti relative to tj could be 
positive, but still the effects of both of them could be negative relative to no-treatment.   
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probability of exposure to a particular program (that is not ti) relative to the sum of 

probabilities of exposure to any program that is not ti. The absolute counterfactual of (13) 

as a summary measure for the effect of some treatment relative to all other treatments can 

also be represented using a weighted aggregate of the pairwise causal comparisons 

between the particular treatment and all other treatments: 
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This expression retains the causal interpretation of the effect of treatment ti relative to the 

hypothetical state of random exposure to any other program that is not ti. Lechner (2002) 

uses this expression and calls it the composite treatment effect.   

 The second aspect to the ti-versus-ti' relation is that the complements to particular 

treatments cannot be used as a common baseline, i.e. 
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Table 1 presents an overview of different causal queries and the corresponding 

counterfactuals. In the binary case (M=2), either (a) t0=t1' or (b) t0≠t1'. The first case (a) is 

the usual one, and applies for observational studies. The second case (b) comprises two 

possibilities depending on a relevance criterion. On the one hand, if t0≠t1', so that there 
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exists a W' world besides W={W0,W1}, and t1' is considered irrelevant for some reason, 

such as t0 being explicitly specified, like in an experimental study, then this implies that 

W' is irrelevant. On the other hand, if one has reason to believe that t0≠t1' and if W' is 

relevant, then there are two further possibilities: Either (i) one has some usable 

information about W', then this converts to the multivalued case, or (ii) one does not have 

such information, which hints at a violation of SUTVA because there exist unrepresented 

versions of treatment. Usually (as in the agricultural setting of Neyman 1923 [1990]) one 

thinks of unrepresented versions of treatment as unrepresented versions of the "actual" 

treatment – in this case, however, T' comprises unrepresented versions of the no-

treatment state (cf. also section 3.3).  

 

< Table 1 about here> 

 

 For the multivalued case (M>2), as there are several well-defined treatments, 

assume that there is a specific t0 (possibly defined via the absence of all other treatments) 

and thus W=Ω. Table 1 depicts some possible counterfactual comparisons. First, the 

causal effect of a particular treatment could be inferred relative to the no-treatment state. 

As in the binary case, this would usually be the causal question of interest. Second, one 

could construct the causal comparison of a particular treatment relative to any other 

treatment within W. In interpreting the effect it should then (a) be pointed out why this is 

considered to be a causal question of interest, and (b) be noted that any other treatment 

(besides the two we relate) can be used as baseline. The most relevant baseline is the no-

treatment state, and should be considered in order to identify the level of the inferred 

effect. The third possible counterfactual for M>2 relates a specific treatment ti to its 

absolute counterfactual, a function of the outcomes of all other treatments except ti. This 

infers the causal effect of some treatment relative to (an appropriate combination of) all 

other alternative treatments. This could be a weighted average as given in (13). In a sense 

this is similar to the "t1'=anything-that-is-not-t1"-case for M=2, with the difference that 

now it is "everything", not "anything", expressing the fact that all alternative treatments 

are well-defined – and that the corresponding outcomes can therefore be appropriately 

weighted in an empirical study. Regarding the absolute counterfactual, it can be of 
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particular interest to compare the no-treatment state to the summary over all other 

treatments to infer whether the introduction of the overall set of treatments yielded any 

positive response. 

 Finally, it should be noted that one could of course construct many more 

counterfactuals within this model. For instance, one could use causal relations between 

treatments as a baseline for causal relations between other treatments, or construct the 

comparison between a particular treatment and a weighted combination of some, but not 

all of the alternative treatments, etc. That, however, is pure mechanics, and I suppose it 

might be difficult to conceive the exact causal interpretations of such counterfactuals. 

 

3.3 Illustration 

In the M=2 case, why can it can be insightful to distinguish a known or well-defined no-

treatment state (t0≠t1') from a no-treatment state defined merely by the absence of 

treatment (t0=t1')? Imagine a researcher evaluating some government training program in 

an observational study. She constructs some retrospective comparison group defined by 

not having participated in the program. However, training usually takes time. Assume an 

average of three months in this example. What did comparison group units do during that 

time? Remain unemployed, continue job search, do nothing, take private training course, 

etc.? Maybe some of that, maybe all of that, maybe none of that. In most cases, the data 

do not contain any information in this regard. Thus, since it is impossible to open this 

black box, one needs to make some assumption about the comparison treatment. It is then 

fairly convenient to define the no-treatment state as just that, the absence of the treatment 

under study. The causal effect is that of the training program relative to any other 

possible (but unobserved) alternative action the program participants would have engaged 

in had they not participated. Clearly, this is quite different from the explicit specification 

of the no-treatment state in an experimental medical study (t0=placebo). 

An observational study by Larsson (2000) uses the propensity score matching 

approach for multivalued treatment developed by Lechner (2001) to evaluate labor 

market programs in Sweden. In the study M=3, the treatments being Youth Practice (YP), 

Labor Market Training (LMT), and non-participation. In personal communication with 

the author the interpretation was given that the no-treatment state comprises a state of job 
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search rather than non-participation. This finding has several implications: (a) If one has 

usable information to distinguish job searchers from non-participants, this converts to a 

case of M=4 with treatments YP, LMT, job search, non-participation. (b) If in fact all 

individuals in the no-treatment state are in job search, this changes the counterfactual 

question, and causal inference is on the effect of YP (or LMT) relative to job search, and 

not relative to non-participation. (c) If the no-treatment state comprises both individuals 

in job search and non-participants, this hints at a violation of SUTVA. 

 

3.4 Distance  

Since the counterfactual account of causation, and therefore also the POM, are based on 

the notion of closest possible worlds, the question arises what can be said about the 

proximity of worlds. From the counterfactual logic of causation outlined above, and 

detailed in Appendix A, it follows that the POM constructs closeness a priori. There is no 

"quest for the closest possible world" to infer the causal effect of one treatment to some 

other treatment. Rather, in comparing two treatment-worlds, the model mechanically 

makes the counterfactual true and establishes closeness. 

 As a theoretical construct, the causal model consists of equidistant worlds, 

because worlds differ only with respect to treatment and associated outcome, and are 

otherwise identical. In an application of the model under randomization, equidistance still 

holds in principle. This is because randomization ensures that the subpopulations that are 

exposed to each treatment do not differ from each other. The logic is as follows. In an 

application, all treatment-worlds, each defined by a treatment and an outcome, are 

represented by the population exposed to that treatment and responding with the 

respective outcome. It is therefore the population in each treatment that characterizes the 

specific treatment-world. If worlds did possibly differ in respects other than treatment 

and outcome, it would have to be through differences in the population that define each 

treatment-world. Since the POM produces valid causal inference only when worlds do 

not differ (besides treatment and outcome), the populations that define the worlds must 

not differ from each other. How could populations differ from other? In terms of their 

covariates. If covariates do not differ, and thus populations are identical, then the 
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treatment-worlds defined by these populations are identical (apart from treatment and 

outcome), and are thus equidistant.  

 The distance between worlds finds expression in the distribution of covariates 

across populations in different treatments. If these distributions are the same (or 

balanced), the only possible distance between worlds could arise from distance between 

treatments. In the principal model there is no such distance. In applications, there may 

well be. Consider the case of a dose-response medical treatment with 3 levels of 

treatment and a no-treatment state. For instance, 4 groups of patients are exposed to the 

following amounts of a drug, (I) 100mg, (II) 200mg, (III) 400mg, and (IV) a placebo 

(0mg). Under randomization, all 4 treatment groups are identical in every respect besides 

treatment level. Imagine the drug is supposed to decrease systolic blood pressure, and the 

outcome variable takes on values (IV) 150 for the no-treatment group, and (I) 147, (II) 

145, and (III) 144, respectively, for the other groups. The effects relative to the no-

treatment group are ∆I,IV=–3, ∆II,IV=–5, and ∆III,IV=–6, which would imply that treatment 

(III) is the most effective. However, in this example treatments (I) to (III) represent 

different doses of the same drug. In order to consider the respective dose, and thus 

consider the respective distance of each treatment level to the no-treatment state, one 

could weigh each effect by the size of the dose, yielding ∆I,IV=–3/100=–0.033, ∆II,IV=–

5/200=–0.025, and ∆III,IV=–6/400=–0.015, which would imply that treatment (I) was the 

most effective one.11 

 Hence, in applications, distances between treatment-worlds are likely to play a 

role. Under randomization, since covariates are identical across treatment populations, 

these distances are solely expressed in the level of treatment. If the treatments do not 

have an ordering as in a dose-response setting, treatment worlds will be equidistant, 

unless weights on the outcomes are deliberately imposed. In a randomized experiment, 

this could find expression in different population shares across treatments, i.e. different 

participation probabilities. But even if the population were randomized into treatment 

populations with different probabilities, there would only be the possibility but not the 

necessity to use these probabilities, since covariates are balanced nevertheless. 

                                                 
11 Clearly, this example is not supposed to make sense in medical terms, but is only meant for illustration. 
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 In an observational study, covariate balance is rarely given, and it is the aim of 

matching estimators to assure that treatment groups do not differ from each other in, at 

least, observable characteristics. If they achieve this goal (and selection is indeed on 

observables), all results from the randomized context hold, i.e. worlds differ only by 

treatment and are otherwise equidistant. However, using matching in the multivalued 

context usually achieves only pairwise congruence of the distribution of covariates, or the 

propensity score. If comparing one treatment to more than one alternative treatment (such 

as, for instance, in the absolute counterfactual), the distributions of covariates are 

unlikely to be balanced across all treatments. However, given the probability of 

participation in each treatment, i.e. the propensity score, it is possible to weigh each 

treatment-world accordingly, using, for instance, expression (13b). Such an empirical 

procedure appropriately reflects distances between treatment worlds.  

 

 

4. Application 

 

This section applies the POM to the evaluation of active labor market policy. Since the 

application is merely meant to illustrate the mechanisms of the POM, it reduces 

propensity score matching methods in the multivalued treatment case to its essentials, in 

order to emphasize the points made in the previous section. For a comprehensive account 

of detailed statistical and econometrical issues in the application of this method see 

Lechner (2001, 2002).  

 The data contain M=4 treatment states, a non-participation state (t0), labor market 

training (t1), wage subsidy scheme (t2), and public work, i.e. direct employment in the 

public sector (t3).12 The sample comprises N=6,037 observations, of which 121 

participate in t1, 275 in t2, 49 in t3, and 5,592 are in the non-participation state. The latter 

group is only specified as being unemployed, and registered at the local labor office. The 

outcome variable Y captures post-treatment labor market performance, expressed by 

average employment rates in the 9 months succeeding treatment. The outcomes across 

                                                 
12 The data come from the PLFS (Polish Labor Force Survey) 1996, which contains a special questionnaire 
on participation in active labor market programs and individual labor force status histories. The programs 
and their effectiveness have been discussed at length in Kluve et al. (1999). 
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the initial groups are Y0=0.547, Y1=0.499, Y2=0.238, Y3=0.361. Simple comparisons 

between these outcomes yield the FATE. Table 2 depicts these pairwise comparisons. 

Clearly, since we are just comparing sample averages, the pairwise effects are symmetric. 

The no-treatment state shows a positive effect relative to any other treatment. Table 2 

illustrates that, when comparing for instance t1 (training) and t2 (wage subsidy), the 

resulting positive effect (a 26.1% increase in employment rates) cannot reveal that both 

treatments show negative effects relative to the no-treatment state.  

 

 < Table 2 about here > 

 

Table 3 compares each treatment with a function of outcomes of all other 

treatments given in equation (13). This absolute counterfactual is a hypothetical 

comparison between a specific treatment and a synthetic state in which units would have 

been randomly assigned to one of the other treatments. Equal weights according to (13a) 

are used, since in this simple FATE comparison there is no reason to assume distances 

between treatment-worlds to differ across treatments. Table 3 shows that the non-

participation state dominates the combination of all other treatments. A policy 

implication of such a finding would be that apparently the introduction of the whole set 

of programs did not yield any positive effects. The absolute counterfactual effect for 

training is also positive, while the wage subsidy program fares worse than a combination 

of its alternatives. For public work, the result is inconclusive.  

The main point is that – as shown in section 3.2 – the absolute counterfactual 

specifies an alternative state to any particular treatment ti. It is the complement ti' 

composed of all other particular treatments. The no-treatment state t0 also specifies an 

alternative state to ti. Whereas in the binary case these two alternatives are the same, a 

comparison between Tables 2 and 3 shows the substantial differences that can arise in the 

case of multivalued treatment. For instance, relative to the no-treatment state training 

displays an insignificant, possibly negative, treatment effect (Table 2). When comparing 

training to its complement, however, the result is that training appears to have a 

significantly positive effect (Table 3). This reflects the positive impact of training relative 

to both the wage subsidy and the public work program. Both counterfactuals – the no-
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treatment state as well as the complement – have a coherent causal interpretation, but the 

comparison highlights that they answer expressly different questions. 

 

< Table 3 about here > 

 

 So far this illustration has only considered the FATE parameters, i.e. naïve 

comparisons of sample averages. However, as section 2 has pointed out, this does in 

general not equal the causal parameter of interest, the ATE, unless independence holds. 

In an observational study, this implies the necessity to adjust for covariates based on the 

assumption that treatment assignment is strongly ignorable. Using the result due to 

Imbens (2000) and Lechner (2001) outlined in section 2.4 it is sufficient to condition on 

the estimated generalized propensity score. The score can be estimated using a 

multinomial choice model. Subsequently, the generalized propensity score is used for 

pairwise matching of all treatment groups, thus adjusting for differences in covariates. 

The algorithm applied here is a simplified version of the prototypical algorithm given in 

Lechner (2002). 

 Table 4 depicts the estimates of a multinomial logit model. The base category is 

non-participation. The variables "unemp1", "unemp2" etc capture pre-treatment 

employment histories over the four quarters preceding treatment in indicating in which 

quarter an individual had been unemployed. Employment histories have been identified 

as a particularly important determinant of selection into programs (cf. Card and Sullivan 

1988, Heckman and Smith 1999, Kluve et al. 1999). Since the start of treatment is not 

defined for non-participant units, these units are randomly assigned a pre-treatment 

history from the distribution of histories for treated units. Table 4 shows that individuals 

with little education are less likely to participate in training, whereas a high level of 

education and being unemployed only in the last quarter preceding treatment is positively 

associated with participation in training, relative to non-participation. For selection into 

the wage subsidy program a history of unemployment seems important, in particular 

long-term unemployment (variable "unemp1234"). Moreover, men and individuals with 

low education are more likely to participate in the wage subsidy program. In the public 
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work program, men are also predominant, while the employment history does not give 

clear indications. 

  

 < Table 4 about here > 

 

 The coefficients from the model are used to predict the generalized propensity 

score, which in turn is used in pairwise matching across treatment groups. Table 5 

presents the resulting average treatment effects ATE. The row/column relation indicates 

the direction of matching, i.e. rows indicate the "treatment" sample, columns the 

"control" sample. Clearly, since sample sizes differ substantially and the algorithm 

adjusts for that in allowing for multiple use of observations if the control sample is 

smaller than the treated sample, the direction of matching matters and effects are not 

symmetric. While, however, most of the effects are at least symmetric in qualitative 

terms, the negative effect of non-participation versus training could not be reproduced as 

a reverse positive effect in the comparison of training relative to non-participation. 

Usually the ATE of a treatment relative to the no-treatment state is the causal parameter 

of interest. Irrespective of the direction of matching, Table 5 shows that both the wage 

subsidy and the public work program have negative effects on the post-treatment 

employment rate relative to non-participation. As an implication for the model, the 

asymmetry of pairwise effects shows that worlds are not necessarily as identical as the 

model assumes. 

 

 < Table 5 about here > 

 

 Table 6 displays the absolute counterfactual treatment effects for the matched 

samples. The upper part applies equation (13) and compares each treatment relative to a 

synthetic combination of all other treatments using equal weights (13a). This implies 

equidistance between worlds. The lower part of Table 6 applies the probability weights 

given in equation (13b) and therefore reflects different distances between treatment-

worlds expressed in the generalized propensity score. The results clearly show that the 

distance between treatment-world plays an important role in assessing counterfactual 
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treatment effects. While in a pairwise comparison distance does not matter, a comparison 

of outcomes across treatment worlds must and can reflect the fact that treatments have 

varying "distance" from each other. As delineated in section 3.4, this distance can be 

expressed in terms of the covariates, i.e. the generalized propensity score. The results 

using probability weights thus appear more credible, since they consider – from the 

perspective of each treatment group – how close the alternative treatment-worlds are.  

 

 < Table 6 about here > 

 

 As a result, this streamlined application of matching methods using the 

generalized propensity score has shown that many subtle issues arise for causal inference 

in the case of multivalued treatment. Besides well-known problems such as the 

specification of a multinomial choice model, this extends to the definition of the no-

treatment state, or other alternative states, and to appropriate weighting schemes to 

express distance when assessing counterfactual treatment effects across treatment-worlds. 

These are fundamental issues that have to be addressed in any study using this method.  

 Another practical issue that should be mentioned regards the use of a binary 

versus a multinomial choice model. Lechner (2002) shows that in an applied 

observational study it does make a difference whether one assesses ti' as W'=W0 using a 

binary probability model or ti' as W'={W0∪W1∪...∪Wi-1∪Wi+1∪...∪Wm-1} using a 

multinomial probability model. The first results in an insufficient specification of the 

alternative state by aggregating groups into one alternative group without taking into 

account the different composition of subgroups, while the second appears to correctly 

disentangle the desired absolute counterfactual. This finding emphasizes the importance 

attributed to the definition of W' in section 3.1. 

 

 

5. Conclusion 

 

It is well-known that causal inference for binary treatments can be relatively 

straightforward using a randomized experiment, but that it can be a formidable task when 
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only non-experimental data is available. Recent developments in matching estimators 

have made explicit extensions to observational studies on causal inference for 

multivalued treatment possible. Whereas this opens up a large potential for applied 

research, a set of further complications arises. This has been well recognized regarding 

identification and estimation issues involved (Lechner 2002). This paper has gone back to 

the foundations of the causal model that underlies these studies, namely a model of causal 

dependence in counterfactual terms based on relations between closest possible worlds, 

and has demonstrated which causally meaningful counterfactual questions can be asked, 

and answered. As a result, the specification of the no-treatment state, and any other 

alternative state, plays a particularly important role in the case of multivalued treatment. 

Furthermore, the principal idea of equidistant worlds, on which the model is based, does 

in general not hold in practice, and distances between worlds need to be taken into 

account. An application from program evaluation has illustrated these points. 

These are fundamental issues that need to be addressed, and they point to the fact 

that particular care is needed in modeling causal relationships. Philip Dawid's often-cited 

observation that "causal inference is one of the most important, most subtle, and most 

neglected of all the problems of statistics" (Dawid 1979) may not be true anymore 

regarding the "neglect". Indeed, advances in causal inference have been quite impressive 

over the last two decades – and this paper has discussed only a small share of them. 

However, as I have tried to show, causal inference continues to demand a clear 

conception of the mechanisms of a causal model. The subtlety of the problem remains. 
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Appendix A: Counterfactual conditionals and the POM 

 

Lewis's theory of causation employs possible world semantics for counterfactual 

conditionals, a semantics which provides truth conditions for counterfactuals in terms of 

relations between possible worlds (Lewis 1973a,b). Possible world semantics for 

counterfactuals are based on the idea of comparative similarity between worlds. Given a 

set of worlds W, one world Wj∈W is closer to a given world Wi∈W than another world 

Wk∈W if Wj resembles Wi more than Wk resembles Wi. The notion of closeness is based 

on the idea of Wi being the actual world, and defining Wj,Wk∈W with respect to their 

proximity to actuality. Lewis imposes two formal constraints on this similarity relation: 

(i) It produces a weak ordering of worlds such that any two worlds can be ordered with 

respect to their closeness to the actual world, where "weak" implies that ties are 

permitted, but any two worlds are comparable. (ii) The actual world is closest to 

actuality, resembling itself more than any other world does. 

 For any two propositions C and E, define the following counterfactual 

conditionals: 

 

(A1a) C  E "If C were (had been) the case, then E would be (have been) the 

case." 

 

(A1b) ~C  ~E "If C were not (had not been) the case, then E would not be (not 

have been) the case." 

 

The counterfactual conditional C C is characterized by the following truth 

condition in terms of the similarity relation: 

 

(A2) C  E is true at a world Wi∈W iff either (i) there are no possible C-worlds, or 

(ii) some C-world where E holds is closer to Wi than is any C-world where E does 

not hold. 

 

(i) implies that the counterfactual is vacuously true. From the perspective of Wi being the 
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actual world, the idea of (ii) is that C E is (nonvacuously) true in the actual world if 

it takes less of a departure from actuality to make the antecedent true along with its 

consequent, than it does to make the antecedent true without the consequent. Under the 

assumption that there must always be one or more closest C-worlds this condition 

simplifies to C  E being nonvacuously true iff E holds at all the closest C-worlds. 

Lewis (1973b) extends this setting by pairing propositions and events: To any 

possible event e there corresponds the proposition O(e) that holds at all and only those 

worlds where e occurs. Thus, O(e) is the proposition that e occurs, and counterfactual 

dependence among events is simply counterfactual dependence among the corresponding 

propositions. We then have a definition of causal dependence: 

 

(A3) Let c and e be two distinct possible particular events. Then e causally depends on 

c iff O(c)  O(e) and ~O(c) ~O(e). 

 

This condition states that whether e occurs or not depends on whether c occurs or not. 

The dependence consists in the truth of the two counterfactuals O(c) O(e) and 

~O(c)  ~O(e). Consider two cases: first, if c and e do not actually occur, then the 

second counterfactual is automatically true because its antecedent and consequent are 

true. Thus, e depends causally on c iff the first counterfactual holds, i.e., iff e would have 

occurred if c had occurred. Second, if c and e are actual occurrent events, it follows from 

the second formal condition on the comparative similarity relation that the first 

counterfactual is automatically true, because the condition implies that a counterfactual 

with true antecedent and true consequent is itself true. Thus, e depends causally on c iff, 

if c had not been, e never had occurred. To put it simply: 

 

(A3a) c causes e iff both c and e are actual occurrent events and if c had not occurred 

then e would not have occurred. 

 

Or, using the possible world semantics for counterfactuals: 

 

(A3b)  c causes e iff both O(c) and O(e) are true in the actual world and in the closest (to 
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the actual world) possible world in which O(c) is not true, O(e) is not true. 

 

These results can be used to show that the POM is based on causal dependence in 

counterfactual terms. Define the following set of events: 

 

 ek:  Unit u∈U is exposed to treatment tk∈T, i.e. D(u)=tk, and 

 e*k:  Unit u∈U has the value )u(Yk  for variable Y, 

 

where k=1,…,m, so that the number of events for each individual unit is 2×M (as there 

are N units in U, the total number of events is 2×M×N). Then:  

 

(A4) The unit-level causal effect of treatment ti∈T relative to treatment tj∈T (as 

measured by Y) is defined by the difference )u(UTE)u(Y)u(Y ijji =−  iff the 

counterfactual conditionals O(ei) O(e*i), ∼O(ei) ∼O(e*i), and O(ej) 
 O(e*j), ∼O(ej)  ∼O(e*j) are true. 

 

To illustrate this, consider the binary case and define the four events:  

 

 e1: Unit u is exposed to treatment t 

 e2: Unit u is exposed to treatment c 

 e*1: Unit u has the value Yt(u) for variable Y 

 e*2: Unit u has the value Yc(u) for variable Y 

 

In this special case (A4) becomes: 

 

(A4a) The unit-level causal effect of treatment t∈T relative to treatment c∈T (as 

measured by Y) is defined by the difference Yt(u)-Yc(u)=UTEtc(u) iff the 

counterfactual conditionals O(e1) O(e*1), ∼O(e1) ∼O(e*1), and O(e2) 
 O(e*2), ∼O(e2)  ∼O(e*2) are true. 
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If, furthermore, treatment c is merely the absence of treatment, i.e. e2=~e1, and e*2=~ e*1, 

then UTE is defined under the simplified condition that only the two counterfactuals 

O(e1)  O(e3) and ∼O(e1)  ∼O(e3) need to be true, because O(e2)  O(e*2) = 

O(∼e1)  O(∼e*1) = ∼O(e1)  ∼O(e*1), and ∼O(e2) ∼O(e*2) = ∼O(∼e1) 
 ∼O(∼e*1) = O(e1)  O(e*1). 



 31

References 

 

Angrist, Joshua D., and Jinyong Hahn (1999), ”When to Control for Covariates? Panel-

Asymptotic Results for Estimates of Treatment Effects”, NBER Technical 

Working Paper 241, Cambridge, MA. 

Angrist, Joshua D., Guido W. Imbens, and Donald B. Rubin (1996), "Identification of 

Causal Effects Using Instrumental Variables" (with discussion), Journal of the 

American Statistical Association 91, 444-472. 

Card, David, and Daniel Sullivan (1988), “Measuring the Effect of Subsidized Training 

Programs on Movements In and Out of Employment”, Econometrica 56, 497-530. 

Cochran, W.G. (1965), "The Planning of Observational Studies of Human Populations" 

(with discussion), Journal of the Royal Statistical Society Series A 128, 234-266. 

Cox, David R. (1958), Planning of Experiments, New York: Wiley. 

Dawid, A.P. (1979), "Conditional Independence in Statistical Theory", Journal of the 

Royal Statistical Society Series B 41, 1-31. 

Dehejia, R. and S. Wahba (1999), "Causal Effects in Nonexperimental Studies: 

Reevaluating the Evaluation of Training Programs", Journal of the American 

Statistical Association 94, 1053-1062. 

Fisher, Ronald A. (1935), The Design of Experiments, Edinburgh: Oliver & Boyd. 

Freedman, David (1999), "From Association to Causation: Some Remarks on the History 

of Statistics", Statistical Science 14, 243-258. 

Galles, David and Judea Pearl (1998), "An Axiomatic Characterization of Causal 

Counterfactuals", Foundations of Science 3, 151-182. 

Gerfin, M. and M. Lechner (2000) ‘Microeconometric Evaluation of the Active Labour 

Market Policy in Switzerland’, IZA Disc. paper No. 154, IZA: Bonn. 

Greenland, Sander (2000), "Causal Analysis in the Health Sciences", Journal of the 

American Statistical Association 95, 286-289. 

Hahn, Jinyong (1998), “"On the Role of the Propensity Score in the Efficient Semi-

parametric Estimation of Average Treatment Effects”, Econometrica 66, 315-332. 



 32

Heckman, James J. (1992), "Randomization and Social Policy Evaluation", in C. Manski 

and I. Garfinkel (eds), Evaluating Welfare and Training Programs, Cambridge, 

MA: Harvard University Press, 201-230. 

Heckman, James J. (2000), "Causal Parameters and Policy Analysis in Economics: A 

Twentieth Century Retrospective", Quarterly Journal of Economics 115, 45-97. 

Heckman, James J., Hidehiko Ishimura and Petra E. Todd (1997), “Matching as an 

Econometric Evaluation Estimator: Evidence from Evaluating a Job Training 

Programme”, Review of Economic Studies 64, 605-654. 

Heckman, James J., Robert J. LaLonde, and Jeffrey A. Smith (1999), "The Economics 

and Econometrics of Active Labor Market Programs", in O. Ashenfelter and D. 

Card (eds), Handbook of Labor Economics, Vol. III, Ch. 31, Amsterdam: North-

Holland. 

Heckman, James J., and Jeffrey A. Smith (1999), "The Pre-programme Earnings Dip and 

the Determinants of Participation in a Social Programme: Implications for Simple 

Programme Evaluation Strategies", The Economic Journal 109, 313-348. 

Hirano, Kei, Guido W. Imbens and Geert Ridder (2000) "Efficient Estimation of Average 

Treatment Effects Using the Estimated Propensity Score", NBER technical 

working paper T0251. 

Holland, Paul W. (1986), "Statistics and Causal Inference" (with discussion), Journal of 

the American Statistical Association 81, 945-970. 

Holland, Paul W. (1988), "Causal Inference, Path Analysis, and Recursive Structural 

Equation Models", Sociological Methodology 18, 449-484. 

Imbens, Guido W. (2000), "The Role of the Propensity Score in Estimating Dose-

Response Functions", Biometrika 87, 706-710. 

Kluve, Jochen, Hartmut Lehmann, and Christoph M. Schmidt (1999), "Active Labor 

Market Policies in Poland: Human Capital Enhancement, Stigmatization, or 

Benefit Churning?", Journal of Comparative Economics 27, 61-89. 

LaLonde, Robert J. (1986), "Evaluating the Econometric Evaluations of Training 

Programs with Experimental Data", American Economic Review 76, 604-620.  

Larsson, Laura (2000), "Evaluation of Swedish youth labour market programmes", 

Uppsala University, Dept. of Economics Working paper 2000-6. 



 33

Leamer, Edward E. (1983), "Let's Take the Con Out of Econometrics", American 

Economic Review 73, 31-43. 

Leamer, Edward E. (1988), "Discussion" [of papers by Holland, Marini and Singer, and 

Glymour, Scheines and Spyrtes], Sociological Methodology 18, 485-493. 

Lechner, Michael (1999), "Earnings and Employment Effects of Continuous Off-the-Job 

Training in East Germany After Unification", Journal of Business & Economic 

Statistics 17, 74-90. 

Lechner, Michael (2000), "An Evaluation of Public-Sector-Sponsored Continuous  

Vocational Training Programs in East Germany", The Journal of Human 

Resources 35, 347-375. 

Lechner, Michael (2001), "Identification and Estimation of Causal Effects of Multiple 

Treatments under the Conditional Independence Assumption", in M. Lechner and 

F. Pfeiffer (eds), Econometric Evaluation of Labour Market Policies, Heidelberg: 

Physica. 

Lechner, Michael (2002), "Program Heterogeneity and Propensity Score Matching: An 

Application to the Evaluation of Active Labor Market Policies", Review of 

Economics and Statistics, forthcoming. 

Lewis, David (1973a), Counterfactuals, Oxford: Blackwell. 

Lewis, David (1973b), "Causation", Journal of Philosophy 70, 556-567. 

Neyman, Jerzy (1923 [1990]), "On the Application of Probability Theory to Agricultural 

Experiments. Essay on Principles. Section 9.", translated and edited by D.M. 

Sabrowska and T.P. Speed from the Polish original, which appeared in Roczniki 

Nauk Rolniczych Tom X (1923), 1-51 (Annals of Agriculture), Statistical Science 

5, 465-472. 

Neyman, Jerzy (1935), with co-operation by K. Iwaszkiewicz, and S. Kolodziejczyk, 

"Statistical Problems in Agricultural Experimentation" (with discussion), 

Supplement to the Journal of the Royal Statistical Society 2, 107-180. 

Pratt, John W. and Robert Schlaiffer (1988), "On the Interpretation and Observation of 

Laws", Journal of Econometrics 39, 23-52. 



 34

Quandt, Richard E. (1958), "The Estimation of the Parameters of a Linear Regression 

System Obeying Two Separate Regimes", Journal of the American Statistical 

Association 53, 873-880. 

Quandt, Richard E. (1972), "A New Approach to Estimating Switching Regressions", 

Journal of the American Statistical Association 67, 306-310. 

Robins, James M. and Sander Greenland (2000), "Comment" on 'Causal Inference 

Without Counterfactuals' by A.P. Dawid, Journal of the American Statistical 

Association 95, 431-435. 

Rosenbaum, Paul R. (1995), Observational Studies, New York: Springer. 

Rosenbaum, Paul R. and Donald B. Rubin (1983), "The Central Role of the Propensity 

Score in Observational Studies for Causal Effects", Biometrika 70, 41-55. 

Rosenbaum, Paul R. and Donald B. Rubin (1984), "Reducing Bias in Observational 

Studies using Subclassification on the Propensity Score", Journal of the American 

Statistical Association 79, 516-524. 

Roy, A.D. (1951), "Some Thoughts on The Distribution of Earnings", Oxford Economic 

Papers 3, 135-146. 

Rubin, Donald B. (1974), "Estimating Causal Effects of Treatments in Randomized and 

Nonrandomized Studies", Journal of Educational Psychology 66, 688-701. 

Rubin, Donald B. (1977), "Assignment to Treatment Group on the Basis of a Covariate", 

Journal of Educational Statistics 2, 1-26. 

Rubin, Donald B. (1980), "Comment" on 'Randomization Analysis of Experimental Data: 

The Fisher Randomization Test' by D. Basu, Journal of the American Statistical 

Association 75, 591-593. 

Rubin, Donald B. (1986), "Which Ifs Have Causal Answers", Comment on 'Statistics and 

Causal Inference' by P.W. Holland, Journal of the American Statistical 

Association 81, 961-962. 

Rubin, Donald B. (1990), "Neyman (1923) and Causal Inference in Experiments and 

Observational Studies", Comment on 'On the Application of Probability Theory to 

Agricultural Experiments. Essay on Principles. Section 9.' by J. Neyman, 

Statistical Science 5, 472-480. 



 35

Salmon, Wesley (1980), "Probabilistic Causality", Pacific Philosophical Quarterly 61, 

50-74. 

Skyrms, Brian (1988), "Probability and Causation", Journal of Econometrics 39, 53-68. 

Smith, Jeffrey A. and Petra E. Todd (2002), "Does Matching overcome LaLonde's 

critique of Nonexperimental estimators?" Journal of Econometrics, forthcoming. 

Sobel, Michael E. (1995), "Causal Inference in the Social and Behavioral Sciences", in G. 

Arminger, C.C. Clogg, M.E. Sobel (eds), Handbook of Statistical Modeling for 

the Social and Behavioral Sciences, New York: Plenum Press. 

Speed, T. J. (1990), "Introductory Remarks on Neyman (1923)", Statistical Science 5, 

463-464. 

Suppes, Patrick (1970), A Probabilistic Theory of Causality, Amsterdam: North Holland. 

 



Table 1. Varieties of Counterfactuals  
 

Number of 
treatment 

worlds in W 

 
Treatment of 

interest 

 
Counterfactual 

treatment  

 
Causal effect 

 
Interpretation / Notes 

     
M=2 t1 t0 0110 YY −=∆  The no-treatment state, in most cases the 

counterfactual of interest. Usually equals 
t1', differs only if explicitly specified (as 
in experimental studies), or if SUTVA is 
violated. 

     
  t1' '11'11 YY −=∆  Anything that is not t1. Usually applies in 

observational studies, where it equals t0. 
     

M>2 ti t0 0i0i YY −=∆  The no-treatment state, again the 
counterfactual of interest in most cases. 
Relevant as baseline. 

     
  tj ≠ ti 

0j0i

jkik

jiij YY

∆−∆=

∆−∆=

−=∆

 

Any other particular treatment can be used 
as counterfactual, for interpretation 
important to note that the baseline 
(usually the no-treatment state) is implicit. 

     
  ti' 

 
)Y,...,Y,Y,...,Y,Y(F

Y
YY

1m1i1i10

i

'ii'ii

−+−

−=
−=∆

 

Everything that is not ti – the absolute 
counterfactual, the outcome of which is 
given as a function of the outcomes of all 
treatments except ti 

     

 
Notes: For M>2, as in the discussion in the text, assume that W=Ω. 



Table 2. Pairwise treatment effects: FATE 

 

 "Control" 
"Treatment" Nonparticipation Training Wage subsidy Public work 

     
Nonparticipation _ .048 .309*** .186*** 

  (.040) (.025) (.061) 
Training -.048 _ .261*** .138** 

 (.040)  (.046) (.072) 
Wage subsidy -.309*** -.261*** _ -.123** 

 (.025) (.046)  (.066) 
Public work -.186*** -.138** .123** _ 

 (.061) (.072) (.066)  

 
Notes: Pairwise treatment effects on post-treatment employment rates. Rows denote the "treatment" t, 
columns the "control" treatment c, i.e. table entries are ∆tc=Yt–Yc. Standard errors in parentheses. 
Significance levels are denoted ***=1%, **=5%, *=10%. 
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Table 3. Absolute counterfactuals: FATE   
 
 
0=Non-participation 1=Training 2=Wage subsidy 3=Public work 

    
.181*** .117*** -.231*** -.067 
(.026) (.045) (.034) (.063) 

    
 
 
Notes: Absolute counterfactual treatment effects on post-treatment employment rates. Table entries are 
∆ii'=Yi–Yi'. Control treatments weighted with equal weights. Standard errors in parentheses. Significance 
levels are denoted ***=1%, **=5%, *=10%. 
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Table 4. Multinomial Logit estimates 
 
 

    Outcome    
  1=Training  2=Wage subsidy  3=Public work  
        

Female  0.055  -0.715***  -2.669***  
  (0.189)  (0.135)  (0.526)  

Married  0.328  0.194  0.742**  
  (0.216)  (0.155)  (0.323)  

Age  0.147*  0.158***  0.325***  
  (0.083)  (0.052)  (0.125)  

Agesq  -0.002*  -0.002***  -0.004**  
  (0.001)  (0.001)  (0.002)  

Urban  0.439  0.301  0.691  
  (0.373)  (0.269)  (0.732)  

Higheduc  1.062***  -1.385  0.075  
  (0.389)  (1.021)  (1.042)  

Loweduc  -1.071***  0.559***  0.368  
  (0.338)  (0.144)  (0.323)  

unemp1  0.151  0.553  1.419**  
  (0.433)  (0.435)  (0.628)  

unemp2  0.105  0.835  -0.745  
  (0.598)  (0.526)  (0.982)  

unemp3  0.161  -0.725  0.708  
  (0.668)  (0.678)  (1.016)  

unemp4  1.735***  1.447***  0.873  
  (0.292)  (0.348)  (0.670)  

unemp34  -0.146  1.637**  0.178  
  (0.778)  (0.796)  (1.318)  

unemp234  -0.863  -1.572**  0.372  
  (0.809)  (0.703)  (1.331)  

unemp1234  0.193  1.144**  -0.409  
  (0.652)  (0.588)  (0.975)  

_cons  -7.623***  -7.937***  -12.513***  
  (1.510)  (1.000)  (2.443)  
        

Loglikelihood    -1637.5    
 
Notes: Base category is outcome 0=Non-participation. N= 6,037. Standard errors in parentheses. 
Significance levels are denoted ***=1%, **=5%, *=10%. "higheduc"=university, "loweduc"= primary 
school attainment or less. "unemp1"= person was unemployed in the first of the four quarters preceding 
treatment. "unemp2", "unemp3", "unemp4" are defined accordingly. "unemp34"= person was unemployed 
in the third and fourth quarter, etc. 
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Table 5. Pairwise treatment effects after matching: ATE 

 

 "Control" 
"Treatment" Nonparticipation Training Wage subsidy Public work 

     
Nonparticipation _ -.067*** .031*** .111*** 

  (.008) (.008) (.008) 
Training -.018 _ .110** .092* 

 (.041)  (.053) (.058) 
Wage subsidy -.187*** -.186*** _ .049* 

 (.027) (.035)  (.032) 
Public work -.232*** -.090 .116* _ 

 (.067) (.084) (.079)  

 
Notes: Pairwise treatment effects on post-treatment employment rates. Rows denote the "treatment" t, 
columns the "control" treatment c, i.e. table entries are ∆tc=Yt–Yc. Standard errors in parentheses. 
Significance levels are denoted ***=1%, **=5%, *=10%. 
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Table 6. Absolute counterfactuals: ATE   
 
 

 0=Non-
participation 

1=Training 2=Wage subsidy 3=Public work 

     
Equal weights .025*** .061* -.108*** -.069 

 (.007) (.044) (.027) (.067) 
     

Probability weights -.003 -.011 -.184*** -.213*** 
 (.007) (.041) (.027) (.066) 

     
 
 
Notes: Absolute counterfactual treatment effects on post-treatment employment rates. Table entries are 
∆ii'=Yi–Yi'. Standard errors in parentheses. Significance levels are denoted ***=1%, **=5%, *=10%. 
 


